
Evaluating Performance of Hibernate ORM based
Applications using HQL Query Optimization

Salahuddin Saddar, Junaid Baloch, Memoona Sami*,
Nasrullah Pirzada, Vijdan Khalique and Arsalan Aftab Memon

Mehran University of Engineering & Technology Jamshoro, Hyderabad, Pakistan.

Abstract
With the continuous advancement in technology, web technologies have
reached to a new height. Enterprise applications are meant to be the basic
need of today’s world which aims to produce results that are highly reliable,
portable and adaptable. With these enormous features, they needed the
storage mechanism which could handle and store the data effectively. The
storage system thus required was a database management system but
again technical knowledge was required to make things work appropriately.
However, this approach was the traditional one which requires data to be
stored in tabular format whereas Object oriented architecture has taken
the programming language to a whole new technical phase for which the
traditional RDBMS will not efficiently accomplish the expected job. To fulfill
this gap in the literature, Object Relational Mapping is emerged as a solution
to provide which provide comparative technical features effortlessly. These
characteristics simplify and make the mapping of objects in object-oriented
programming languages more flexible, efficient and easy to use. Therefore,
we propose in this paper that Object relational Modeling (ORM) relates each
object of object oriented languages to corresponding rows in the table.

 Oriental Journal of Computer Science and Technology

Journal Website: www.computerscijournal.org

ISSN: 0974-6471, Vol. 11, No. (2) 2018, Pg. 115-125

Article History

Received: 24 April 2018
Accepted: 29 May 2018

Keywords

Hibernate,
ORM,
HQL,
Mapping,
RDMS,
OOP.

CONTACT Memoona Sami memoona.sami@faculty.muet.edu.pk Mehran University of Engineering & Technology Jamshoro,

Hyderabad, Pakistan.
© 2018 The Author(s). Published by Techno Research Publishers
This is an Open Access article licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License
(https://creativecommons.org/licenses/by-nc-sa/4.0/), which permits unrestricted NonCommercial use, distribution, and reproduction in
any medium, provided the original work is properly cited.
To link to this article: http://dx.doi.org/10.13005/ojcst11.02.07

Introduction
On the temporary basis, filing and spreadsheets is
used for storing massive data. However, commonly
relational databases are used for the application and
its availability. Relational databases require data to
be stored in form of tables which is not sufficient. It
does not work out with this fast emerging technical
world and its needs. Since, now the time has gone
where procedural languages were used. Today is an

era of Object oriented programming which considers
each and everything as an object and serves better
for providing enterprise solutions.

The selection for Java language is justified since
it is an open source language and also provides
number of facilities such as: an API for querying and
manipulating databases commonly termed as Java
Database Connectivity (JDBC) API. Along with that,

116Saddar et al., Orient. J. Comp. Sci. & Technol., Vol. 11(2) 115-125 (2018)

it gives the important transformation of information
between the two sorts (JAVA and RDBMS)1.

Also, there are number of ORM instruments to play
out the activity by coding.

Literature Review
In modern development, Object Relational Mapping
such as Hibernate has proved to be a good choice.
Due to its portable and easy to use nature, it has
been popular2. Different languages are pooled in
a database application for data processing. They
proposed a framework to optimized database
applications which proves to be a significant solution
in real world applications15. Various factors such as
database access and efficiency influence Information
management systems. A real case is enlightened to
define hibernate ORM mechanisms16. ORM tools are
used to map objects to and from relational form. This
paper highlights the evaluation performance of open
source object persistence17.

Our proposed study examines the ORM tool by
performing distinctive tests, in various situations,
this examination is centered on a wide assortment of
hibernate consideration. Execution time is the basic
measurement tool for it.

•	 It considers numerous situations especially
related about one-to-many relation in
hibernate.

•	 Correlates object database and ORM tools.
•	 Examines an ORM tool hibernates by

performing distinctive investigations, in
various situations.

•	 Has pleasantly centered on execution
improvements.

•	 Drives attention on number of inquiries
executed however following are also significant
performance concerns.

ORM v/s Versant Object DB
Versant has more than 50000 users from
different fields, like government, medical and
telecommunication.

However, hibernate is a standard tool, used for ORM
queries. It can be used with a relational database as
well as with Oracle Enterprise edition.

Table 1: Comparison between Hibernate
and Versant

Functionality	 Hibernate	 Versant

Schema Generation	 Yes	 Yes
Java Interfaces	 Yes	 Yes
Bi-directional	 Yes	 Yes
relationships
Session Control	 Yes	 Yes
Locking Mechanisms	 Yes	 Yes
Optimization	 Yes	 Yes
Database Access	 Yes	 Yes
Control
XML Support	 Yes	 Yes In
		 some cases
Distribution	 Yes	 Yes

A basic investigation was carried out to judge the
performance of object database with ORM tools by
making use of tools like Versant Object Database
Management System (ODBMS) and Hibernate.

The comparison between features is shown in
table 1.

The main concept behind the speed of hibernate
is that the query is carried out on indexed columns
of objects which ultimately makes hibernate much
faster than versant so it has won this race in terms
of performance.Both tools provide java interfaces,
sessional control mechanism. Hibernate offers XML
support in all cases but versant supports for some
cases.

Hibernate v/s JPOX
This study examines the functioning of Hibernate
and OpenJPA and JPOX and Speedo.

Diverse sort of tests were carried out that were
greatly based upon and data retrieval. The following
queries were utilized for execution tests.

• 	 To load one ob jec t tw ice wi th in a
transaction.

• 	 To load a single object two time among these
transactions.

• 	 Lazy loading an object data.
• 	 Eager loading an object data.

117Saddar et al., Orient. J. Comp. Sci. & Technol., Vol. 11(2) 115-125 (2018)

• 	 Loading and saving similar and complex
objects.

Processing time gives the immediate execution
consequences and shows performance of ORM or
persistence device for a particular test5.

The consequences of the lazy loading were better
in the case of the Hibernate and OpenJPA than the
JPOX and Speedo.

If the second query is concerned, ORM apparatus
performed exceptional. The high hand of caching
systems was proved to take place in this regard3.

So finally, it is concluded that hibernate played out
the best general in majority of queries however,
JDO marked its way in case of eager loading and
complex objects.

Hibernate v/s iBatis
Discussions were carried out in which examination of
iBatis and Hibernate was embraced. With a specific
end goal to play out the correlation, different tests
were performed using distinctive exercises on a
small banking system. The tests are dependent
on a Java program, which utilizes both iBatis and
Hibernate. It performs essential Structured Query
Languages (SQL) operations as execution test.
Theseexperiments were executed for numerous
clients. Java threads were carried out for multi-client
tests. To play out the tests the following input sources
can be utilized4.

•	 Selectcontinues used tool.
•	 Records which are to be updated at one

time
•	 Select the need of performing the entire or

one of the operations.
•	 Which threads (users) used to execute the

multiuser testing.
•	 Which iterations mean the number of the time

a particular set has been accessed?

The outcomes demonstrate that Hibernate utilizes
much time to embed information because of
mapping. Likewise, it was revealed that Hibernate
consumes extra time to run out the query for the 1st
time then the 2nd time. This is essentially because
of the store cache implementation in Hibernate.
Hence it is proved; Hibernate performs superior to
iBatis in hot queries, while performs slower for cold
queries.

Hibernating
Hibernate ORM (Object Relational Model) is a
mediator between Java based objects and relational
database which shapes the entities into object
oriented domain. Hibernation enables malleable
access to relational databases with high level object
based functions.

The Figure 1 shows the layered architecture
of Hibernate, which is used to help the users
without knowing APIs. Hibernate uses database
and configuration data to deliver services to the
applications.

Fig.1: Structure of hibernating

118Saddar et al., Orient. J. Comp. Sci. & Technol., Vol. 11(2) 115-125 (2018)

HQL (Hibernate Query Language) and SQL
(Structured Query Language) are almost similar.
HQL, however, deals with objects and SQL works
on tables. To carry out the interactions with relational
databases, Hibernate transforms HQL queries into
SQL.Not only this, Hibernate is itself capable of
executive direct SQL queries. HQL is much preferred
in order to avoid database portability issues which
can arise in near future7.

HQL Clauses
Keywords such as SELECT, FROM and WHERE and
so forth are utilized as Keyword for writing clauses
to perform HQL operations.

FROM Clause
Persistent objects are loaded using the From Clause
into the memory. It requires Package and Class
names.

AS Clause
In the HQL queries, AS clause is utilized to allocate
Aliases to the classes. This clause proves to be
useful to manage long queries. The Aliases can be
relegated to the classes specifically.

SELECT Clause
The select condition empowers the designer to
recover specific properties of the items instead of the
entire question itself. The Select condition empowers
the engineers to apply more control over the choice
contrasted with the FROM statement13.

WHERE Clause
Where provision empowers the engineer to
characterize a condition in view of which the
properties ought to be recovered, consequently
empowering to limit the outcome.

ORDER BY Clause
This statement is used to select the outcomes
which arerecovered by the inquiry. The requesting/
arranging of the outcomes relies upon the boundary
gave by the engineer which can either be DESC for
descending order or ASC for ascending order.

UPDATE Clause
Engineers may utilize the Update Clause to refresh
the properties of an object, the e. With the Hibernate

3, mass updates can be performed. With a specific
end goal to execute the update, the execute Update()
method is utilized6.

DELETE Clause
Delete clause is utilized by the designer to erase
at least one object. The erasure of objects works
contrastingly by comparing Hibernate 2 and 3. The
execute Update() method is utilized for deleting
purpose,.

INSERT Clause
This clause is utilized to embed new records in
HQL.

Object Relational Mapping (ORM)
Object Relational Mapping is a strategy that is
utilized to bring similarity between the distinctive
sorts of information. If an object is stored into data
store and converted back to object without changing
its properties, it is said to be persistent8,14.

One of the Code bits for this is:-

A case of Office and Employee class is taken as
an example.

The above mentioned code in figure 2 (b)is used
to create a JAVA Office dialect class.The @Entity
comment performs as an entity class. To generate

119Saddar et al., Orient. J. Comp. Sci. & Technol., Vol. 11(2) 115-125 (2018)

Fig. 2 (a) Office and Employee class code

Fig: 2(b) JAVA Office dialect class

keys automatically the @id and @Generated Value
is utilized they are also used to represent the primary
key. @OneToOne comment gives affiliation the
Employee class instances i.e. worker and manager.
Additionally the Employee class gives the data to
create the employee instance. The code bit in Figure
3 displays how to make object relational mapping
between a relational database and a programming
dialect like JAVA.

Fig. 3: Object relational mapping between
a relational databaseand a programming

dialect like JAVA

Problems of Data Navigation
Java and relational databases both deal differently
in getting to information and navigating or exploring
from one object to next11. The associations can be
either unidirectional or bidirectional. Java accesses
data by making use of getter methods, e.g.,
getName(). However, getting to a particular data
in a relational database will require SQL queries
which can be complicated much if it requires joins.
The performance can only be enhanced if minimum
requests are made to database9.

Inheritance Mapping
Mapping of inheritance particularly defined at
the object level is the real essence of inheritance
mapping. To map a database scheme, three various
inheritance techniques are listed out:

Inheritance Mapping to Single Table: Nulls’ Style
A class with its entire subclasses is mapped to a
single database table which can possible nullify few
attributes in that table. That’s the reason this type of
mapping is referred to as Nulls’ style.

Inheritance Mapping to Multiple Style: ER Style
This technique plots a segment to no of tables in the
database of the inheritance hierarchy.

Association Mapping
Association is the basic relation or affiliation
between the two classes or the collection between
the classes.

Three kinds of association mappings are defined
below:

120Saddar et al., Orient. J. Comp. Sci. & Technol., Vol. 11(2) 115-125 (2018)

MANY-TO-ONE ASSOCIATION
An association L on class M and N is many-to-one
if for any object M, is related with at most one object
in N.

ONE-TO-ONE ASSOCIATION
L will be a balanced association, if any object in N
is related with at most one object in M9.

MANY-TO-MANY ASSOCIATION
If none of above mentioned condition matches, it falls
in the category of many-to-many association12.

Desinging Experimental Senarios
The few Test cases scenarios are illustrated below:
Table 2,3,4 shows the test cases.

Table 2: HQL Query Optimization

Test Case #: 001			T est Case Name: Query Loading
System: Hibernate			 Subsystem: HQL Query Optimization
Designed by: MemoonaJunaid			D esign Date:12/09/2017
Executed by: SalahuddinSaddar			 Execution Date:12/09/2017
Short Description: Testing SELECT and JOINS Queries	
Pre-Conditions:
•	 Setting environments for querying in IDE’S
•	 Server must be running
•	 Designed database in MySQL

Step 	Action 	 Expected System 	 Actual Result 	 PASS/FAIL	C omment
		 Response

1	 Loaded Large SELECT Queries 	 Least time to	 Took 152 ms to	 PASS	 Verified
	 in comparison to other tools	 fetch all records	 fetch all the records
2	 Loaded Small SELECT Queries	 Least time to	 Took less time from some	 PASS	 Verified
	 in comparison to other tools	 fetch all records	 of the other tools	
3	 Loaded joins	 Small execution time	 Takes long time	 PASS	 Verified

Test Case #: 002			T est Case Name: Criteria API
System: Hibernate			 Subsystem: HQL Query Optimization
Designed by: MemoonaJunaid			D esign Date:12/09/2017
Executed by: SalahuddinSaddar			 Execution Date:12/09/2017
Short Description: Criteria API instead of HQL	
Pre-Conditions: Testing Criteria API
•	 Setting environments for querying in IDE’S
•	 Designed Databases in MySQL
•	 Server must be running

Step 	Action 	 Expected System 	 Actual Result 	 PASS/FAIL	C omment
		 Response

1	 HQL Query	 Retrieved the result	 Retrieved the result	 PASS	 Verified
		 set in lists containing	set in lists containing
		 all the data	 all the data
2	 Query using Criteria	 Retrieved the result	 Retrieved the result set 	 PASS	 Verified
	 API	 set as a complete	 as a complete model	
		 model of bean class	 of bean class

121Saddar et al., Orient. J. Comp. Sci. & Technol., Vol. 11(2) 115-125 (2018)

Table 3: Fetch type LAZY

Test Case #: 003		T est Case Name: Fetch type LAZY
System: Hibernate		 Subsystem: HQL Query Optimization
Designed by: MemoonaJunaid	D esign Date:12/09/2017
Executed by: SalahuddinSaddar	 Execution Date:12/09/2017
Short Description: Fetching data using LAZY annotation	
Pre-Conditions:
•	 Setting environments for querying in IDE’S
•	 Server must be running
•	 Designed database in MySQL

Step 	 Action 	 Expected System 	 Actual Result 	 PASS/FAIL	C omment
		 Response

1	 Fetching using	 Will result all the	 Retrieved all the objects, 	 PASS	 Verified
	 type EAGER	 objects initially	 resulting in high throughput
2	 Fetching using	 Will result the 	 Retrieved desired objects 	 PASS	 Verified
	 type LAZY	 objects and data	 resulting low throughput
			 requested

Experiments and Results
Experiment 1
Objective

Fetching Parameter Eager Using Hql Query
Option

Fig. 4: Fetch Parameter Eager With Hql Query Option

122Saddar et al., Orient. J. Comp. Sci. & Technol., Vol. 11(2) 115-125 (2018)

Result
As the table shows, the normal and the real records
are same, using fetch type Eager, Hibernate is

expressly characterized to collect entire records
along with the accumulations of entire objects.

The time efficiency of these two is portrayed as:

Fig. 5: Time Efficiency of HQL Query and Criteria API

Experiment 2
Objective
Associated Collections Are Loaded Via Useless

Database Hit Even in The Absence of Associated
Object Exists at All

Fig. 6: Useless Database Hit To Load Associated Collection

123Saddar et al., Orient. J. Comp. Sci. & Technol., Vol. 11(2) 115-125 (2018)

Result
As a result of Eager search, a considerable measure
of queries was characterized by HQL, as the majority
of the objects are retrieved in a single run in view of
the preparing of extensive number of queries.

Experiment 3
Objective
Associated collections are not fetched by HQL
query joins. Extrahits are obligatory to load
theassociation.

Result
As the outcome table displays, the normal queries
count are ZERO. But, but it is not real scenario
on account of the Fetch type utilized is Eager, as
specified above. Which bring about stacking of total
objects, in addition to the index and the different
gathering of objects?

Fig. 7(A): Hql Query Joins Fetching

Fig. 7 (B) Hql Query Joins Fetchng The Associated Collections

124Saddar et al., Orient. J. Comp. Sci. & Technol., Vol. 11(2) 115-125 (2018)

Benefits
•	 No any master required for database

administration.
•	 Avoids superfluous access to databases.
•	 Avoids composing of long queries and joins.
•	 Suitable for an expansive enterpr ise

applications.
•	 Requires no progressions to be made, if

databases are changed or the other way
around.

Conclusion
There are different techniques for managing
transactions implemented by systems that can
affect system performances. This research basically
focuses on how each system performs when
recovering data, that’s all important to focus on
factors such as cache management, query language,
and ORM functions that have these tools. Similarly,
we used different types of searches to check the

operation of different systems run. These queries
are selected according to different criteria and
navigation paths. These questions provide a way
to check the different functions of systems, such as
their search languages inheritance strategies and
their caching mechanisms. These functions can
help us decide which The system works better and
what needs to be done to improve performance.
It is very much clear from the results that utilizing
Criteria API rather than conventional HQL Query
will furnish result sets with wanted throughput that
will upgrade the execution of querying. Moreover,
recovering records utilizing LAZY fetch type will
give low overhead to applications. A good ORM will
automatically generate all the SQL needed to store
the objects.

Acknowledgement
 We would like to thanks co-authors for the discussion
and contributions in provided research.

References

1.	 Chen, Tse-Hsun, et al., "An empirical study on
the practice of maintaining object-relational
mapping code in java systems." Proceedings
of the 13th International Conference on Mining
Software Repositories. ACM, 2016.

2.	 Decan, Alexandre, Mathieu Goeminne,
and Tom Mens. "On the interaction of
relational database access technologies in
open source java projects." arXiv preprint
arXiv:1701.00416(2017).

3.	 Dhingra, Neha, EmadAbdelmoghith,
and Hussein T. Mouftah. "Performance
Evaluation of JPA Based ORM Techniques.” In
Proceedings of 2nd International Conference on
Computer Science Networks and Information
Technology, Held on 27th - 28th Aug 2016.

4.	 Babu, Chitra, and G. Gunasingh. "DESH:
Database evaluation system with hibernate
ORM framework." Advances in Computing,
Communications and Informatics (ICACCI),
2016 International Conference on. IEEE,
2016.

5.	 Fraczek, Konrad, and MalgorzataPlechawska-
Wojcik. "Comparative Analysis of Relational
and Non-relational Databases in the Context
of Performance in Web Applications."

International Conference: Beyond Databases,
Architectures and Structures. Springer,
Cham, 2017.

6.	 Wan, Jing-Jing, Zhen Qin, and Xia Liu. "ORM
Elevation in Response to Cognitive Impairment
Is an Accompanying Phenomenon." CNS
neuroscience & therapeutics 22.8 (2016):
723-724.

7.	 Bernstein, Philip A., et al., Incremental mapping
compilation in an object-to-relational mapping
system (extended version). Technical Report
MSR-TR-2013-45, Microsoft Research,
2013.

8.	 Chen, Tse-Hsun, et al., "CacheOptimizer:
Helping developers configure caching
frameworks for Hibernate-based database-
centric web applications." Proceedings of
the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software
Engineering. ACM, 2016.

9.	 Procaccianti, Giuseppe, Patricia Lago,
and WouterDiesveld. "Energy efficiency of
orm approaches: an empirical evaluation."
Proceedings of the 10 th ACM/IEEE
International Symposium on Empirical
Software Engineering and Measurement.

125Saddar et al., Orient. J. Comp. Sci. & Technol., Vol. 11(2) 115-125 (2018)

ACM, 2016.
10.	 Chen, Tse-Hsun, et al., "Cache Optimizer:

Helping developers configure caching
frameworks for Hibernate-based database-
centric web applications." Proceedings of
the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software
Engineering. ACM, 2016.

11.	 Chen, Tse-Hsun, et al., "Detecting problems
in the database access code of large scale
systems-an industrial experience report."
Software Engineering Companion (ICSE-C),
IEEE/ACM International Conference on.
IEEE, 2016.

12.	 Chen, Tse-Hsun, et al., "An empirical study on
the practice of maintaining object-relational
mapping code in java systems." Proceedings
of the 13th International Conference on Mining
Software Repositories. ACM, 2016.

13.	 Grechanik, Mark, et al., "Enhancing rules
for cloud resource provisioning via learned
software performance models." Proceedings
of the 7th ACM/SPEC on International

Conference on Performance Engineering.
ACM, 2016.

14.	 Ackermann, Hilmar, et al., "A backend
extension mechanism for PQL/Java with
free run-time optimisation." International
Conference on Compiler Construction.
Springer, Berlin, Heidelberg, 2015.

15.	 Emani, K. Venkatesh, and S. Sudarshan.
"Cobra: A Framework for Cost Based
Rewriting of Database Applications." arXiv
preprint arXiv:1801.04891 (2018).

 16.	 Zhengju, Chen. "Hibernate-Based Database
Access Optimizat ion [J] ." Computer
Applications and Software 7 (2012): 045.

17.	 Van Zyl, Pieter, Derrick G. Kourie, and Andrew
Boake. "Comparing the performance of object
databases and ORM tools." Proceedings
of the 2006 annual research conference
of the South African institute of computer
scientists and information technologists on
IT research in developing countries. South
African Institute for Computer Scientists and
Information Technologists, 2006.

