

ISSN: 0974-6471, Vol. 10, No. (4) 2017, Pg. 824-828

Oriental Journal of Computer Science and Technology

Journal Website: www.computerscijournal.org

Fibonacci Cordial Labeling of Some Special Graphs

A. H. ROKAD

School of Engineering, RK.University, Rajkot, 360020, Gujarat, India.

Abstract

An injective function g: V(G) \rightarrow {F₀, F₁, F₂, ..., F_{n+1}}, where F_j is the jth Fibonacci number (j = 0, 1, ..., n+1), is said to be Fibonacci cordial labeling if the induced function g^{*}: E(G) \rightarrow {0, 1} defined by g * (xy) = (f (x) + f (y)) (mod2) satisfies the condition le_g (1) - e_g (0)l ≤ 1. A graph having Fibonacci cordial labeling is called Fibonacci cordial graph.

In this paper, i inspect the existence of Fibonacci Cordial Labeling of DS(Pn), DS(DFn), Edge duplication in $K_{1,n}$, Joint sum of Gl(n), DFn \oplus $K_{1,n}$ and ringsum of star graph with cycle with one chord and cycle with two chords respectively.

Article History

Received: 09 November 2017 Accepted:17 November 2017

Keywords

Fibonacci Cordial Labeling, Degree Splitting, Edge duplication, Joint sum, Ring sum.

Introduction

The idea of Fibonacci cordial labeling was given by A. H. Rokad and G. V. Ghodasara¹. The graphs which i considered here are Simple, undirected, connected and finite. Here V(G) and E(G) denotes the set of vertices and set of edges of a graph G respectively. For different graph theoretic symbols and nomenclature i refer Gross and Yellen³. A dynamic survey of labeling of graphs is released and modified every year by Gallian⁴.

Definition 1

Let G = (V(G), E(G)) be a graph with V = X1 U X2 U X3 U... XUY where each X is a set of vertices having at least two vertices of the same degree and Y = V \ U X₁. The degree splitting graph of G designated by DS(G) is acquired from G by adding vertices $z_1, z_2, z_3, \ldots, z_y$ and joining to each vertex of x₁ for i ε [1, t].

Definition 2

The double fan DF_n comprises of two fan graph that have a common path. In other words $DF_n = Pn + K_2$).

Definition 3

The duplication of an edge e = xy of graph G produces a new graph G' by adding an edge

CONTACT Amit H. Rokad amit.rokad@rku.ac.in • School of Engineering, RK.University, Rajkot, 360020, Gujarat, India. © 2017 The Author(s). Published by Techno Research Publishers

To link to this article: http://dx.doi.org/10.13005/ojcst/10.04.18

This is an **b** Open Access article licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (https://creativecommons.org/licenses/by-nc-sa/4.0/), which permits unrestricted NonCommercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

e' = x'y' such that N (x') = N (x) U {y'} - {y} and N (y') = N (y) U {x'} - {x}.

Definition 4

The graph obtained by connecting a vertex of first copy of a graph G with a vertex of second copy of a graph G is called joint sum of two copies of G.

Definition 5

A globe is a graph obtained from two isolated vertex are joined by n paths of length two. It is denoted by Gl_{m} .

Definition 6

Ring sum $G_1 \bigoplus G_2$ of two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is the graph $G_1 \bigoplus G_2 = (V_1 \cup V_2, (E_1 \cup E_2) - (E_1 \cap E_2))$.

Results

Theorem 1: DS(Pn) is Fibonacci cordial. Proof 1

Consider P_n with V (P_n) = {vi : i ε [1, n]}. Here V (Pn) = X₁ U X₂, where X₁ = {x₁ : 2 ε [2, n-1]} and X₂ = {x₁, x_n}. To get DS(Pn) from G we add w₁ and w₂ corresponding to X₁ and X₂. Then IV(DS(Pn))I = n + 2 and E(DS(Pn)) = {X₀w₂, X₂w₂} U {w₁x₁ : i ε [2, n - 1]}. So, IE(DS(Pn))I = -1 + 2n.

I determine labeling function g: V(G) \rightarrow {F₀, F₁, F₂, .

..., F_{n+2} as below: $g(w_1) = F_1$, $g(w_2) = F_{n+1}$, $g(x_1) = F_0$, $g(x_1) = F_1$, $2 \le i \le n$. Therefore, $Ie_g(1) - e_g(0)I \le 1$. Therefore, DS(Pn) is a Fibonacci cordial graph.

Example 1: Fibonacci cordial labeling of $DS(P_7)$ can be seen in Figure 1.

graph. Proof 2

Let G = Df_n be the double fan. Let $x_1, x_2, ..., x_n$ be the path vertices of Dfn and x and y be two apex vertices. To get DS(Df_n) from G, we add w₁, w₂ corresponding to X₁, X₂, where X₁ = {x₁ : i ϵ [1, n] } and X₂ = {x, y}. Then IV(DS(Df_n))I = 4+ n & E(DS(Df_n)) = {xw₂, y w₂} U{xw₁ : i ϵ [1, n] }. So, IE(DS(Df_n))I = 1+ 4n.

Theorem 2. DS(DFn) is a Fibonacci cordial

I determine labeling function g: V (G) \rightarrow {F $_{_0}$, F $_{_1}$, F $_{_2}$, \ldots , F $_{_{n+4}}$ }, as below.

For all $1 \le i \le n$. $g(w_1) = F_3$, $g(w_2) = F_2$. $g(x) = F_0$, $g(y) = F_1$, $g(x_i) = F_{i+3}$. Therefore $le_g (1) - e_g (0) l \le 1$. Therefore, DS(DFn) is Fibonacci cordial.

Example 2. Fibonacci cordial labeling of $\text{DS}(\text{DF}_5)$ can be seen in Figure 2.

Fig. 2

Theorem 3. The graph obtained by duplication of an edge in $K_{1,n}$ is a Fibonacci cordial graph. Proof 3

Let x_0 be the apex vertex and x_1, x_2, \ldots, x_n be the consecutive pendant vertices of $K_{1,n}$. Let G be the graph obtained by duplication of the edge $e = x_0 x_n$ by a new edge $e' = x_0' x_n'$. Therefore in G, $deg(x_0) = n$, $deg(x_0') = n$, $deg(v_n) = 1$, $deg(x_n') = 1$ and $deg(x_1) = 2$, $\forall i \in \{1, 2, \ldots, n\}$. Then IV $(K_{1,n})I = n + 3$ and $E(K_{1,n}) = 2n$.

I determine labeling function g: $V(G) \to \{F_{_0},\,F_{_1},\,F_{_2},\,.$ $\ldots,\,F_{_{n+3}}\},$ as below.

$$\begin{array}{l} g(x_{0}) = F_{1}, \\ g(x_{1}) = F_{2}, \\ g(x_{n-1}) = F_{3}, \end{array}$$

$$\begin{split} g(x_{_{0}}^{~}) &= \mathsf{F}_{_{0}}, \\ g(x_{_{n}}^{~}) &= \mathsf{F}_{_{4}}, \\ g(x_{_{i}}) &= \mathsf{F}_{_{i+3_{_{i}}}} \ i \in [2, \, n], \ i \neq n-1. \end{split}$$

Therefore $|e_g(1) - e_g(0)| \le 1$.

Therefore, the graph obtained by duplication of an edge in $K_{1,n}$ is a Fibonacci cordial graph.

Example 3. A Fibonacci cordial labeling of the graph obtained by duplication of an edge e in $K_{1,8}$ can be seen in the Figure 3.

Theorem 4. The graph obtained by joint sum of two copies of Globe GI_(n) is Fibonacci cordial. Proof 4

Let G be the joint sum of two copies of $GI_{(n)}$. Let $\{x, x', x_1, x_2, \ldots, x_n\}$ and $\{y, y ', y_1, y_2, \ldots, y_n\}$ be the vertices of first and second copy of $GI_{(n)}$ respectively.

I determine labeling function g: $V(G) \to \{F_0, F_1, F_2, .$. . , $F_{_{2n+4}}\}$, as below.

 $\begin{array}{l} g(x) = F_{_{0}}, \\ g(x') = F_{_{1}}, \\ g(xi) = F_{_{i+3}}, \ i \in [1, n]. \\ g(y) = F_{_{2}}, \\ g(y') = F_{_{3}}, \\ g(yi) = F_{_{n+i+3}}, \ i \in [1, n]. \\ \\ From the above labeling pattern i have \ e_{_{g}}(0) = n + 1 \ and \ e_{_{\alpha}}(1) = n. \end{array}$

Therefore $|e_{a}(1) - e_{a}(0)| \leq 1$.

Thus, the graph obtained by joint sum of two copies of Globe $Gl_{(n)}$ is Fibonacci cordial.

Example 4. Fibonacci cordial labeling of the joint sum of two copies of Globe $GI_{(7)}$ can be seen in Figure 4.

Theorem 5. The graph $DF_n \oplus K_{1,n}$ is a Fibonacci cordial graph for every n ϵ N . Proof 5

Assume V (DF_n \oplus K_{1, n}) = X₁ U X₂, where X₁ = {x, w, x₁, x₂, ..., x_n} be the vertex set of DFn and X₂ = {v = w, v, v, v, v, v} is the vertex set of K ... Here

= {y = w, y₁, y₂, ..., y_n} is the vertex set of K_{1,n}. Here v is the apex vertex & y₁, y₂, ..., y_n are pendant vertices of K_{1,n}.

Also IV $(DF_n \oplus K_{1,n})| = 2n + 2$, $|E(DF_n \oplus K_{1,n})| = 4n - 1$.

I determine labeling function g: V(DF_n \bigoplus K_{1,n}) \rightarrow {F₀, F₁, F₂, . . . , F_{2n+2}}, as below.

For all $1 \le i \le n$. $g(x) = F_0$, $g(w) = F_1$, $g(x_i) = F_{i+1}$, $g(y_i) = F_{n+i+1}$, From the above

From the above labeling pattern i have $e_g(0) = 2n$ and $e_g(1) = 2n - 1$. Therefore $||e_g(1) - e_g(0)| \le 1$.

Thus, the graph $DF_n \oplus K_{1,n}$ is a Fibonacci cordial graph for every $n \in N$.

Example 5. Fibonacci cordial labeling of $\mathsf{DF}_5 \oplus \mathsf{K}_{1,5}$ can be seen in Figure 5.

Theorem 6. The graph $G \bigoplus K_{1,n}$ is a Fibonacci cordial graph for all $n \ge 4$, $n \in N$, where G is the cycle C_n with one chord forming a triangle with two edges of C_n .

Proof 6

Let G be the cycle C_n with one chord. Let V (G \bigoplus $K_{1,n}$) = $X_1 \cup X_2$, where X_1 is the vertex set of G & X_2 is the vertex set of $K_{1,n}$. Let x_1, x_2, \ldots, x_n be the successive vertices of Cn and $e = x_2 x_n$ be the chord of C_n . The vertices x_1, x_2, x_n form a triangle with the chord e. Here v is the apex vertex & y_1, y_2, \ldots, y_n are pendant vertices of $K_{1,n}$.

Take $y = x_1$. Also $|V(G \oplus K_{1,n})| = 2n$, $|E(G \oplus K_{1,n})| = 2n + 1$.

I determine labeling function g : V (G \oplus K_{1, n}) \rightarrow {F₀, F₁, F₂, . . . , F_{2n}}, as below.

Case I: $n \equiv 0 \pmod{3}$.

For all $1 \le i \le n$. g $(x_i) = F_i$. g $(y_i) = F_{n+i}$.

Case II: $n \equiv 1 \pmod{3}$.

$$\begin{split} g(x_i) &= F_i, \ 1 \leq i \leq n. \\ g(y_1) &= F_0, \\ g(y_i) &= F_{n+i-1}, \ 2 \leq i \leq n. \\ \text{From the above labeling pattern } i \quad have \ e_g \ (0) &= n \\ \text{and } e_n \ (1) &= n+1. \end{split}$$

Therefore $|e_{g}(1) - e_{g}(0)| \leq 1$.

Thus, the graph G \oplus K_{1,n} is a Fibonacci cordial graph.

Example 6. A Fibonacci cordial labeling of ring sum of C_7 with one chord and $K_{1,7}$ can be seen in Figure 6.

Theorem 7. The graph $G \bigoplus K_{1,n}$ is a Fibonacci cordial graph for all $n \ge 5$, $n \ge N$, where G is the cycle with twin chords forming two triangles and another cycle C_{n-2} with the edges of C_n . Proof 7

Let G be the cycle C_n with twin chords, where chords form two triangles and one cycle C_{n-2} . Let V (G \bigoplus $K_{1,n}$) = X₁ U X₂. X₁ = {x₁, x₂, ..., x_n} is the vertex set of C_n, e₁ = x_n x₂ and e₂ = x_n x₃ are the chords of C_n. X₂ = {y = x₁, y₁, y₂, ..., y_n} is the vertex set of K_{1,n}, where y₁, y₂, ..., y_n are pendant vertices and y = x₁ is the apex vertex of K_{1,n}. Also IV (G \bigoplus K_{1,n})I = 2n, IE(G \bigoplus K_{1,n})I = 2n + 2.

I determine labeling function g: V(G \bigoplus K_{1, n}) \rightarrow {F₀, F₁, F₂, . . . , F_{2n}}, as below.

$$\begin{split} g(x_1) &= F_1, \\ g(x_2) &= F_2, \\ g(x_3) &= F_3, \\ g(x_n) &= F_4, \\ g(x_i) &= F_{i+1}, \ 4 \leq i \leq n-1. \\ g(y_i) &= F_{n+i}, \ 1 \leq i \leq n. \end{split}$$

From the above labeling pattern i have $e_g(0) = e_g(1) = n + 1$.

Therefore $|e_g(1) - e_g(0)| \le 1$.

Thus, The graph G \oplus K_{1, n} is a Fibonacci cordial graph.

Example 7. A Fibonacci cordial labeling of ring sum of C_9 with twin chords and $K_{1,9}$ can be seen in Figure 7.

Fig.7

Conclusion

In this paper i investigate seven new graph which admits Fibonacci cordial labeling.

References

- 1 A. H. Rokad and G. V. Ghodasara, Fibonacci Cordial Labeling of Some Special Graphs, *Annals of Pure and Applied Mathematics*, Vol. **11**, No. 1, 2016, 133 – 144.
- 2 F. Harary, Graph theory, Addision-wesley, Reading, MA (1969).
- 3 J Gross and J Yellen, Handbook of graph theory, CRC press (2004).
- 4 J. A. Gallian, A dynamic survey of graph labeling, *The Electronics Journal of Combinatorics*, **19** (2012), DS6 1 – 260.
- 5 M.Sundaram, R. Ponraj, and S. Somasundram, Prime cordial labeling of graphs, *Journal of Indian Acadamy of Mathematics*, **27** (2005), 373-390.
- 6 M. A. Seoud and M. A. Salim, Two upper bounds of prime cordial graphs, *Journal of*

Combinatorial Mathematics and Combinatorial Computing, **75** (2010), 95-103.

- 7 S. K. Vaidya and P. L. Vihol, Prime cordial labeling for some cycle related graphs, *International Journal of Open Problems in Computure Science Mathematics*, **3**, No.5 (2010), 223-232.
- 8 S. K. Vaidya and P. L. Vihol, Prime cordial labeling for some graphs, *Modern Applied Science*, **4**, No.8 (2010), 119-126.
- 9 S. K. Vaidya and N. H. Shah, Prime cordial labeling of some graphs, *Open Journal of Discrete Mathematics*, 2, No. 1 (2012), 11-16. doi:10.4236/ojdm.2012.21003.
- 10 S. K. Vaidyaa and N. H. Shah, Prime cordial labeling of some wheel related graphs, *Malaya Journal of Matematik*, **4**(1)(2013) 148156.