Fibonacci Cordial Labeling of Some Special Graphs

A. H. ROKAD
School of Engineering, RK.University, Rajkot, 360020, Gujarat, India.

Abstract

An injective function $g: V(G) \rightarrow\left\{F_{0}, F_{1}, F_{2}, \ldots, F_{n+1}\right\}$, where F_{j} is the $j^{\text {th }}$ Fibonacci number $(j=0,1, \ldots, n+1)$, is said to be Fibonacci cordial labeling if the induced function $g^{*}: E(G) \rightarrow\{0,1\}$ defined by $g *(x y)=(f(x)+f(y))(m o d 2)$ satisfies the condition $\left|e_{g}(1)-e_{g}(0)\right| \leq 1$. A graph having Fibonacci cordial labeling is called Fibonacci cordial graph.

In this paper, i inspect the existence of Fibonacci Cordial Labeling of $\mathrm{DS}(\mathrm{Pn})$, DS(DFn), Edge duplication in $\mathrm{K}_{1, \mathrm{n}}$, Joint sum of $\mathrm{Gl}(\mathrm{n})$, DFn $\oplus \mathrm{K}_{1, \mathrm{n}}$ and ringsum of star graph with cycle with one chord and cycle with two chords respectively.

Article History

Received: 09 November 2017
Accepted:17 November 2017

Keywords

Fibonacci Cordial Labeling,
Degree Splitting, Edge duplication, Joint sum, Ring sum.

Introduction

The idea of Fibonacci cordial labeling was given by A. H. Rokad and G. V. Ghodasara'. The graphs which i considered here are Simple, undirected, connected and finite. Here $V(G)$ and $E(G)$ denotes the set of vertices and set of edges of a graph G respectively. For different graph theoretic symbols and nomenclature i refer Gross and Yellen ${ }^{3}$. A dynamic survey of labeling of graphs is released and modified every year by Gallian ${ }^{4}$.

Definition 1

Let $\mathrm{G}=(\mathrm{V}(\mathrm{G}), \mathrm{E}(\mathrm{G}))$ be a graph with $\mathrm{V}=\mathrm{X} 1 \mathrm{U} 2$ $\cup X 3 \cup \ldots X_{i} \cup Y$ where each X_{i} is a set of vertices
having at least two vertices of the same degree and $Y=V \backslash \cup X_{i}$. The degree splitting graph of G designated by $D S(G)$ is acquired from G by adding vertices $z_{1}, z_{2}, z_{3}, \ldots, z_{y}$ and joining to each vertex of x_{i} for $i \varepsilon[1, t]$.

Definition 2

The double fan DF_{n} comprises of two fan graph that have a common path. In other words $\mathrm{DF}_{\mathrm{n}}=$ $\left.\mathrm{Pn}+\mathrm{K}_{2}\right)$.

Definition 3

The duplication of an edge $e=x y$ of graph G produces a new graph G' by adding an edge

[^0]$e^{\prime}=x^{\prime} y^{\prime}$ such that $N\left(x^{\prime}\right)=N(x) U\left\{y^{\prime}\right\}-\{y\}$ and $N\left(y^{\prime}\right)$ $=N(y) \cup\left\{x^{\prime}\right\}-\{x\}$.

Definition 4

The graph obtained by connecting a vertex of first copy of a graph G with a vertex of second copy of a graph G is called joint sum of two copies of G.

Definition 5

A globe is a graph obtained from two isolated vertex are joined by n paths of length two. It is denoted by $\mathrm{Gl}_{(n)}$.

Definition 6

Ring sum $G_{1} \oplus G_{2}$ of two graphs $G_{1}=\left(V_{1}\right.$, $\left.E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ is the graph $G_{1} \oplus G_{2}=$ $\left(V_{1} \cup V_{2},\left(E_{1} \cup E_{2}\right)-\left(E_{1} \cap E_{2}\right)\right)$.

Results

Theorem 1: DS(Pn) is Fibonacci cordial.

Proof 1

Consider P_{n} with $\vee\left(\mathrm{P}_{\mathrm{n}}\right)=\{\mathrm{vi}: \mathrm{i} \varepsilon[1, \mathrm{n}]\}$. Here V $(\mathrm{Pn})=\mathrm{X}_{1} \cup \mathrm{X}_{2}$, where $\mathrm{X}_{1}=\left\{\mathrm{X}_{\mathrm{i}}: 2 \varepsilon[2, \mathrm{n}-1]\right\}$ and $X_{2}=\left\{x_{1}, X_{n}\right\}$. To get DS(Pn) from G we add w_{1} and w_{2} corresponding to X_{1} and X_{2}. Then $|\mathrm{V}(\mathrm{DS}(\mathrm{Pn}))|$ $=\mathrm{n}+2$ and $\mathrm{E}(\mathrm{DS}(\mathrm{Pn}))=\left\{\mathrm{X}_{0} \mathrm{w}_{2}, \mathrm{X}_{2} \mathrm{w}_{2}\right\} \cup\left\{\mathrm{w}_{1} \mathrm{x}_{\mathrm{i}}: \mathrm{i} \varepsilon\right.$ $[2, n-1]\}$. So, $|E(D S(P n))|=-1+2 n$.

I determine labeling function $\mathrm{g}: \mathrm{V}(\mathrm{G}) \rightarrow\left\{\mathrm{F}_{0}, \mathrm{~F}_{1}, \mathrm{~F}_{2}\right.$, . $\left.\ldots, F_{n+2}\right\}$ as below:
$g\left(w_{1}\right)=F_{1}$,
$g\left(w_{2}\right)=F_{n+1}$,
$g\left(x_{1}\right)=F_{0}$,
$g\left(x_{i}\right)=F_{i}, 2 \leq i \leq n$.
Therefore, $\left|e_{g}(1)-e_{g}(0)\right| \leq 1$.
Therefore, $\mathrm{DS}(\mathrm{Pn})$ is a Fibonacci cordial graph.
Example 1: Fibonacci cordial labeling of $\operatorname{DS}\left(\mathrm{P}_{7}\right)$ can be seen in Figure 1.

Fig. 1

Theorem 2. DS(DFn) is a Fibonacci cordial graph.

Proof 2

Let $G=D f_{n}$ be the double fan. Let $x_{1}, x_{2}, \ldots, x_{n}$ be the path vertices of $D f n$ and x and y be two apex vertices. To get $\operatorname{DS}\left(\mathrm{Df}_{\mathrm{n}}\right)$ from G, we add $\mathrm{w}_{1}, \mathrm{w}_{2}$ corresponding to X_{1}, X_{2}, where $X_{1}=\left\{\mathrm{X}_{\mathrm{i}}: \mathrm{i} \varepsilon[1, \mathrm{n}]\right\}$ and $\mathrm{X}_{2}=\{\mathrm{x}, \mathrm{y}\}$. Then $\left|V\left(D S\left(D f_{n}\right)\right)\right|=4+n \& E\left(D S\left(D f_{n}\right)\right)=\left\{x_{w_{2}}, y w_{2}\right\}$ $\mathrm{U}\left\{\mathrm{x}_{\mathrm{i}} \mathrm{w}_{1}: \mathrm{i} \varepsilon[1, \mathrm{n}]\right\}$. So, $\left|E\left(D S\left(D f_{n}\right)\right)\right|=1+4 \mathrm{n}$.

I determine labeling function $\mathrm{g}: \mathrm{V}(\mathrm{G}) \rightarrow\left\{\mathrm{F}_{0}, \mathrm{~F}_{1}, \mathrm{~F}_{2}\right.$, $\left.\ldots, F_{n+4}\right\}$, as below.
For all $1 \leq \mathrm{i} \leq \mathrm{n}$.
$g\left(w_{1}\right)=F_{3}$,
$g\left(w_{2}\right)=F_{2}$.
$g(x)=F_{0}$,
$g(y)=F_{1}$,
$g\left(x_{i}\right)=F_{i+3}$.
Therefore $\mathrm{le}_{\mathrm{g}}(1)-\mathrm{e}_{\mathrm{g}}(0) \mathrm{I} \leq 1$.
Therefore, DS(DFn) is Fibonacci cordial.
Example 2. Fibonacci cordial labeling of $\mathrm{DS}\left(\mathrm{DF}_{5}\right)$ can be seen in Figure 2.

Fig. 2
Theorem 3. The graph obtained by duplication of an edge in $K_{1, n}$ is a Fibonacci cordial graph.

Proof 3

Let x_{0} be the apex vertex and $x_{1}, x_{2}, \ldots, x_{n}$ be the consecutive pendant vertices of $K_{1, n}$. Let G be the graph obtained by duplication of the edge $e=x_{0} x_{n}$ by a new edge $e^{\prime}=x_{0}^{\prime} x_{n}^{\prime}$. Therefore in $G, \operatorname{deg}\left(x_{0}\right)=$ $n, \operatorname{deg}\left(x_{0}{ }^{\prime}\right)=n, \operatorname{deg}\left(v_{n}\right)=1, \operatorname{deg}\left(x_{n}{ }^{\prime}\right)=1$ and $\operatorname{deg}\left(x_{i}\right)$ $=2, \forall \mathrm{i} \varepsilon\{1,2, \ldots \mathrm{n}\}$. Then $\mid V\left(\mathrm{~K}_{1, n}\right) I=\mathrm{n}+3$ and $E\left(K_{1, n}\right)=2 n$.
I determine labeling function $\mathrm{g}: \mathrm{V}(\mathrm{G}) \rightarrow\left\{\mathrm{F}_{0}, \mathrm{~F}_{1}, \mathrm{~F}_{2}\right.$, .
$\left.\ldots, F_{n+3}\right\}$, as below.
$g\left(x_{0}\right)=F_{1}$,
$g\left(x_{1}\right)=F_{2}$,
$g\left(x_{n-1}\right)=F_{3}$,
$g\left(x_{0}{ }^{\prime}\right)=F_{0}$,
$g\left(x_{n}^{\prime}\right)=F_{4}$,
$g\left(x_{i}\right)=F_{i+3}, i \varepsilon[2, n], i \neq n-1$.
Therefore $\left|e_{g}(1)-e_{g}(0)\right| \leq 1$.
Therefore, the graph obtained by duplication of an edge in $\mathrm{K}_{1, n}$ is a Fibonacci cordial graph.

Example 3. A Fibonacci cordial labeling of the graph obtained by duplication of an edge e in $\mathrm{K}_{1,8}$ can be seen in the Figure 3.

Fig. 3
Theorem 4. The graph obtained by joint sum of two copies of Globe $\mathrm{Gl}_{(\mathrm{n})}$ is Fibonacci cordial. Proof 4
Let G be the joint sum of two copies of $\mathrm{Gl}_{(n)}$. Let $\left\{x, x^{\prime}, x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $\left\{y, y^{\prime}, y_{1}, y_{2}, \ldots, y_{n}\right\}$ be the vertices of first and second copy of $\mathrm{Gl}_{(n)}$ respectively.
I determine labeling function $\mathrm{g}: \mathrm{V}(\mathrm{G}) \rightarrow\left\{\mathrm{F}_{0}, \mathrm{~F}_{1}, \mathrm{~F}_{2}\right.$, . $\left.\ldots, F_{2 n+4}\right\}$, as below.
$\mathrm{g}(\mathrm{x})=\mathrm{F}_{0}$,
$g\left(x^{\prime}\right)=F_{1}$,
$g(x i)=F_{i+3}, i \varepsilon[1, n]$.
$g(y)=F_{2}$,
$g\left(y^{\prime}\right)=F_{3}$,
$g(y i)=F_{n+i+3}, i \varepsilon[1, n]$.
From the above labeling pattern i have $e_{g}(0)=n+$ 1 and $e_{g}(1)=n$.

Therefore $\left|e_{g}(1)-e_{g}(0)\right| \leq 1$.
Thus, the graph obtained by joint sum of two copies of Globe $\mathrm{GI}_{(\mathrm{n})}$ is Fibonacci cordial.

Example 4. Fibonacci cordial labeling of the joint sum of two copies of $\mathrm{Globe}^{\mathrm{Gl}}{ }_{(7)}$ can be seen in Figure 4.

Fig. 4
Theorem 5. The graph $D F_{n} \oplus K_{1, n}$ is a Fibonacci cordial graph for every $\mathrm{n} \varepsilon \mathrm{N}$.
Proof 5
Assume $V\left(\mathrm{DF}_{\mathrm{n}} \oplus \mathrm{K}_{1, \mathrm{n}}\right)=\mathrm{X}_{1} \cup \mathrm{X}_{2}$, where $\mathrm{X}_{1}=$ $\left\{x, w, x_{1}, x_{2}, \ldots, x_{n}\right\}$ be the vertex set of DFn and X_{2} $=\left\{y=w, y_{1}, y_{2}, \ldots, y_{n}\right\}$ i s the vertex set of $K_{1, n}$. Here v is the apex vertex \& $y_{1}, y_{2}, \ldots, y_{n}$ are pendant vertices of $K_{1, n}$.
Also $I V\left(\mathrm{DF}_{\mathrm{n}} \oplus \mathrm{K}_{1, \mathrm{n}}\right)\left|=2 \mathrm{n}+2,\left|\mathrm{E}\left(\mathrm{DF}_{\mathrm{n}} \oplus \mathrm{K}_{1, \mathrm{n}}\right)\right|=\right.$ 4 n - 1 .
I determine labeling function $\mathrm{g}: \mathrm{V}\left(\mathrm{DF}_{\mathrm{n}} \oplus \mathrm{K}_{1, \mathrm{n}}\right) \rightarrow\left\{\mathrm{F}_{0}\right.$, $\left.F_{1}, F_{2}, \ldots, F_{2 n+2}\right\}$, as below.
For all $1 \leq \mathrm{i} \leq \mathrm{n}$.
$\mathrm{g}(\mathrm{x})=\mathrm{F}_{0}$,
$g(w)=F_{1}$,
$g\left(x_{i}\right)=F_{i+1}$,
$g\left(y_{i}\right)=F_{n+i+1}$,
From the above labeling pattern i have $e_{g}(0)=2 n$ and $e_{g}(1)=2 n-1$.
Therefore $\| e_{g}(1)-e_{g}(0) \mid \leq 1$.
Thus, the graph $D F_{\mathrm{n}} \oplus \mathrm{K}_{1, \mathrm{n}}$ is a Fibonacci cordial graph for every $\mathrm{n} \varepsilon \mathrm{N}$.

Example 5. Fibonacci cordial labeling of $\mathrm{DF}_{5} \oplus \mathrm{~K}_{1,5}$ can be seen in Figure 5.

Fig. 5

Theorem 6. The graph $\mathbf{G} \oplus \mathbf{K}_{1, \mathrm{n}}$ is a Fibonacci cordial graph for all $n \geq 4, n \varepsilon N$, where G is the cycle C_{n} with one chord forming a triangle with two edges of C_{n}.

Proof 6

Let G be the cycle C_{n} with one chord. Let $\mathrm{V}(\mathrm{G} \oplus$ $\left.K_{1, n}\right)=X_{1} \cup X_{2}$, where X_{1} is the vertex set of $G \&$ X_{2} is the vertex set of $K_{1, n}$. Let $x_{1}, x_{2}, \ldots, x_{n}$ be the successive vertices of $C n$ and $e=x_{2} x_{n}$ be the chord of C_{n}. The vertices x_{1}, x_{2}, x_{n} form a triangle with the chord e. Here v is the apex vertex \& $y_{1}, y_{2}, \ldots, y_{n}$ are pendant vertices of $\mathrm{K}_{1, \mathrm{n}}$.
Take $y=x_{1}$. Also $\left|V\left(G \oplus \mathrm{~K}_{1, n}\right)\right|=2 n,\left|E\left(G \oplus K_{1, n}\right)\right|$ $=2 n+1$.
I determine labeling function $\mathrm{g}: \mathrm{V}\left(\mathrm{G} \oplus \mathrm{K}_{1, \mathrm{n}}\right) \rightarrow\left\{\mathrm{F}_{0}\right.$, $\left.F_{1}, F_{2}, \ldots, F_{2 n}\right\}$, as below.

Case I: $\mathbf{n} \equiv \mathbf{0}(\bmod 3)$.
For all $1 \leq i \leq n$.
$\mathrm{g}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{F}_{\mathrm{i}}$.
$g\left(y_{i}\right)=F_{n+i}$
Case II: $n \equiv 1(\bmod 3)$.
$g\left(x_{i}\right)=F_{i}, 1 \leq i \leq n$.
$g\left(y_{1}\right)=F_{0}$,
$g\left(y_{i}\right)=F_{n+i-1}, 2 \leq i \leq n$.
From the above labeling pattern i have $e_{g}(0)=n$ and $e_{g}(1)=n+1$.

Therefore $\left|e_{g}(1)-e_{g}(0)\right| \leq 1$.
Thus, the graph $\mathrm{G} \oplus \mathrm{K}_{1, \mathrm{n}}$ is a Fibonacci cordial graph.

Example 6. A Fibonacci cordial labeling of ring sum of C_{7} with one chord and $\mathrm{K}_{1,7}$ can be seen in Figure 6.

Fig. 6

Theorem 7. The graph $\mathbf{G} \oplus \mathrm{K}_{1, \mathrm{n}}$ is a Fibonacci cordial graph for all $n \geq 5, n \varepsilon N$, where G is the cycle with twin chords forming two triangles and another cycle $\mathrm{C}_{\mathrm{n}-2}$ with the edges of C_{n}.

Proof 7

Let G be the cycle C_{n} with twin chords, where chords form two triangles and one cycle $\mathrm{C}_{\mathrm{n}-2}$. Let $\mathrm{V}(\mathrm{G} \oplus$ $\left.K_{1, n}\right)=X_{1} \cup X_{2} . X_{1}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is the vertex set of $C_{n}, e_{1}=x_{n} x_{2}$ and $e_{2}=x_{n} x_{3}$ are the chords of $C_{n} . X_{2}=\left\{y=x_{1}, y_{1}, y_{2}, \ldots, y_{n}\right\}$ is the vertex set of $\mathrm{K}_{1, \mathrm{n}}$, where $\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}$ are pendant vertices and y $=\mathrm{x}_{1}$ is the apex vertex of $\mathrm{K}_{1, n}$. Also $\mathrm{IV}\left(\mathrm{G} \oplus \mathrm{K}_{1, \mathrm{n}}\right) \mathrm{I}=$ $2 n,\left|E\left(G \oplus K_{1, n}\right)\right|=2 n+2$.
I determine labeling function $\mathrm{g}: \mathrm{V}\left(\mathrm{G} \oplus \mathrm{K}_{1, \mathrm{n}}\right) \rightarrow\left\{\mathrm{F}_{0}\right.$, $\left.F_{1}, F_{2}, \ldots, F_{2 n}\right\}$, as below.
$g\left(x_{1}\right)=F_{1}$,
$g\left(x_{2}\right)=F_{2}$,
$g\left(x_{3}\right)=F_{3}$,
$g\left(x_{n}\right)=F_{4}$,
$\mathrm{g}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{F}_{\mathrm{i}+1}, 4 \leq \mathrm{i} \leq \mathrm{n}-1$.
$g\left(y_{i}\right)=F_{n+i}, 1 \leq i \leq n$.
From the above labeling pattern i have $e_{g}(0)=e_{g}$ (1) $=\mathrm{n}+1$.

Therefore $l e_{g}(1)-e_{g}(0) \mid \leq 1$.
Thus, The graph $G \oplus \mathrm{~K}_{1, \mathrm{n}}$ is a Fibonacci cordial graph.
Example 7. A Fibonacci cordial labeling of ring sum of C_{9} with twin chords and $\mathrm{K}_{1,9}$ can be seen in Figure 7.

Fig. 7

Conclusion

In this paper i investigate seven new graph which admits Fibonacci cordial labeling.

References

1 A. H. Rokad and G. V. Ghodasara, Fibonacci Cordial Labeling of Some Special Graphs, Annals of Pure and Applied Mathematics, Vol. 11, No. 1, 2016, 133 - 144.
2 F. Harary, Graph theory, Addision-wesley, Reading, MA (1969).
3 J Gross and J Yellen, Handbook of graph theory, CRC press (2004).
4 J. A. Gallian, A dynamic survey of graph labeling, The Electronics Journal of Combinatorics, 19 (2012), DS6 1-260.
5 M.Sundaram, R. Ponraj, and S. Somasundram, Prime cordial labeling of graphs, Journal of Indian Acadamy of Mathematics, 27 (2005), 373-390.
6 M. A. Seoud and M. A. Salim, Two upper bounds of prime cordial graphs, Journal of

Combinatorial Mathematics and Combinatorial Computing, 75 (2010), 95-103.
$7 \quad$ S. K. Vaidya and P. L. Vihol, Prime cordial labeling for some cycle related graphs, International Journal of Open Problems in Computure Science Mathematics, 3, No. 5 (2010), 223-232.

8 S. K. Vaidya and P. L. Vihol, Prime cordial labeling for some graphs, Modern Applied Science, 4, No. 8 (2010), 119-126.
$9 \quad$ S. K. Vaidya and N. H. Shah, Prime cordial labeling of some graphs, Open Journal of Discrete Mathematics, 2, No. 1 (2012), 11-16. doi:10.4236/ojdm.2012.21003.
10 S. K. Vaidyaa and N. H. Shah, Prime cordial labeling of some wheel related graphs, Malaya Journal of Matematik, 4(1)(2013) 148156.

[^0]: CONTACT Amit H. Rokad amit.rokad@rku.ac.in School of Engineering, RK.University, Rajkot, 360020, Gujarat, India.
 © 2017 The Author(s). Published by Techno Research Publishers
 This is an $\widehat{6}$ Open Access article licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (https://creativecommons.org/licenses/by-nc-sa/4.0/), which permits unrestricted NonCommercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 To link to this article: http://dx.doi.org/10.13005/ojest/10.04.18

