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Abstract
The problem of recursively approximating motion resulting from the Optical 
Flow (OF) in video thru Total Least Squares (TLS) techniques is addressed. 
TLS method solves an inconsistent system Gu=z , with G and z in error due 
to temporal/spatial derivatives, and nonlinearity, while the Ordinary Least 
Squares (OLS) model has noise only in z. Sources of difficulty involve the 
non-stationarity of the field, the ill-posedness, and the existence of noise in 
the data. Three ways of applying the TLS with different noise conjectures to 
the end problem are observed. First, the classical TLS (cTLS) is introduced, 
where the entries of the error matrices of each row of the augmented matrix 
[G;z] have zero mean and the same standard deviation. Next, the Generalized 
Total Least Squares (GTLS) is defined to provide a more stable solution, but 
it still has some problems. The Generalized Scaled TLS (GSTLS) has G and 
z tainted by different sources of additive zero-mean Gaussian noise and 
scaling [G;z] by nonsingular D and E, that is,  D[G;z]E  makes the errors iid 
with zero mean and a diagonal covariance matrix. The scaling is computed 
from some knowledge on the error distribution to improve the GTLS estimate. 
For moderate levels of additive noise, GSTLS outperforms the OLS, and the 
GTLS approaches. Although any TLS variant requires more computations 
than the OLS, it is still applicable with proper scaling of the data matrix.
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Introduction
Motion Estimation in Robotics
Nowadays, robotics is receiving a lot of consideration. 
Robots can perform tasks in unstructured settings, 
assist humans, interact with users and offer their 
services properly. One of the key issues pertaining 
mobile robots is to register their position. Customarily, 

onboard sensors to collect environmental data 
for localization and mapping purposes solve this 
problem. Many robotic applications use procedures 
to appraise the robot dislocation among consecutive 
measurements. Matching techniques can evaluate 
the relative vehicle motion between two successive 
configurations by maximizing the similarity between 
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the measurements acquired at each configuration. 

When dealing with multimedia applications, Motion 
Estimation (ME) techniques can help improving 
compression and coding of a video sequence. 
For instance, the MPEG-7 offers a complete, 
comprehensible, and valuable collection of motion 
descriptors that capture the different motion 
characteristics in videos with a broad range of 
accuracy38. The fundamental goal is to give useful 
concise descriptors that are easy to mine and to 
match. 

The objective of this research is to identify the 
Motion Vector (MV) or Displacement Vector Field 
(DVF) from the Optical Flow (OF) estimation via 
pel-recursive stationary models. These algorithms 
minimize the Displaced Frame Difference (DFD) in 
a vicinity around the working point that assumes a 
constant image intensity along the motion trajectory 
and they can provide Displacement Vectors (DVs) 
with sub-pixel accuracy directly with no need of 
transmitting the DVF. 

The dislocation of each pixel between frames forms 
the DVF, whose estimation can be accomplished using 
at least two successive frames. The DVF results from 
the apparent motion of the pixel intensities, a.k.a. 
OF. The image sequence is assumed unavailable a 
priori, so that past data will be used as the image is 
processed recursively. This recursive reconstruction 
of the DVF requires knowledge upon the intensity 
values and the previously estimated DVs related to 
the past pixels.

Motion Estimation and Embedded Systems 
OF is a widespread algorithmic computer vision tool, 
that is habitually used in a variety of applications 
like motion segmentation, Unmanned Aerial 
Vehicle (UAV) navigation, visual odometry, collision 
detection, background subtraction, tracking, and 
video compression to quote a few. OF can be used 
in areas like inspection of structures and facilities, 
robotics, avionics, and space activities since some of 
these fields have severe hardware and computational 
resource restrictions. Regrettably, OF computation 
imply in an extraordinary computational load and it 
involves intricate and time-consuming calculations. 
Furthermore, OF can be a preprocessing stage 
of a larger process in addition to the fact robotics, 

avionics and space applications usually need real-
time operation.

These computational resources habitually amount 
to one or more general purpose CPUs (often full-
embedded computers), including Digital Signal 
Processors (DSPs) but they are ill suited for image 
processing and computer vision because they lack 
proper special instructions and hardware sub-
systems22. Furthermore, because of their elevated 
clock rates, they consume a significant amount of 
power, which results in a bulky power supply and high 
heat dissipation that can be a remarkable problem. 

Another difficulty with high clock rate CPUs is their 
vulnerability to space radiation23, which makes lower 
clock rates more appropriate. These flaws of widely 
existing computational hardware have made the 
use of OF computation techniques on lightweight, 
autonomous power platforms rather challenging.

There exists lots of literature on developing new 
methods for accurate and efficient OF computation. 
Several studies compared the exactitude, vector field 
density and computational complexity22, 23 of existing 
methods. Notwithstanding the developments in 
accuracy and the efforts to come up with numerically 
efficient ways, the whole computational performance 
of these algorithms on general-purpose CPU 
architectures is small, which leads to problems to 
implement real-time OF computation with a realistic 
resolution and adequate video frame rate.

While progress in OF calculation continue to appear, 
there has been an evident interest lately on application 
specific alternative computational platforms23. Since 
the software-based computation of image processing 
procedures is rather ineffective, in many research 
studies the solution is often the use of hardware 
acceleration25, 26. Application Specific Integrated 
Circuits (ASICs) are fully custom hardware designs, 
usually mass-produced to fulfill the requirements 
of particular use regarding computational speed, 
space, and power consumption. The hardware can 
process significant amounts of data in parallelized 
and/or pipelined configurations in a single clock cycle 
while general-purpose sequential processors need 
a large number of clock cycles for an identical task. 
For that reason, ASICs are much more resourceful 
than traditional processors. However, ASIC design 
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and manufacturing are long and arduous processes. 
Single instances of a design prototype are too 
costly to produce, and the answer becomes only 
realistic in mass fabrication. Many applications 
require a relatively small number of systems, which 
makes ASICs inappropriate. Another disadvantage 
of ASICs is that once a chip is factory-made, it is 
unmanageable to change it. Any design alteration 
is expensive and involves reproduction and 
replacement of the existing hardware. Hence, ASIC 
designs are only appropriate for a mass produced 
the mature project and are not fit for academic 
investigation, prototyping and/or for small amount 
applications.

Field Programmable Gate Arrays (FPGAs) unravel 
the limitations of the static structure of ASICs 
and can be reprogrammed several times while 
showing similar performance to ASICs in terms of 
computational speed, size, and power dissipation. 
This property makes FPGAs flexible platforms, 
which allow design alterations quickly, even the 
capability to be reconfigured (re-programmed) in 
the field. These benefits of FPGAs make them a 
handy platform to prototypes demanding academic 
studies and therefore attracted current interest for 
hardware-based algorithm development.

Reason to Improve Motion Estimation 
Algorithms
There are many alternative methods for OF 
computation that can be grouped as gradient-
based, correlation-based, energy-based and 
phase-based methods24. This paper deals with 
gradient-based methods depend on the evaluation 
of spatio-temporal derivatives such as the scheme 
presented by Horn and Schunck27 which assumed 
that the OF vector field is smooth and introduced 
a global smoothness term as a second limitation. 
The method from Lucas and Kanade28 on the other 
hand, depends on a conjecture that the neighboring 
pixels around a current pixel move with it, indicating 
a locally constant flow, which brings in additional 
constraint equations. The answer is obtained 
by Ordinary Least Squares (OLS) estimation. 
Recently, there has been a growing interest in 
gradient-based methods to be implemented in 
embedded hardware intended for applications in 
robotics so that many other approaches have been  
proposed29, 30, 31. 

The prevai l ing OF implementat ions code 
and test  a lgor i thms on genera l -pur pose  
computers11, 12, 16, 39. The first inspiration is the 
widespread availability of such hardware and the 
possibility of reusing code to low requirements 
concerning software design experience. Another 
motivation is the ability to calculate the performance 
and compare it to existing implementations in 
literature. Even though PC hardware structures 
vary, they are standardized, and it is possible to 
create benchmarks. Although OF algorithms have 
improved over time, the PC-based implementation 
performance remained below the necessities of real-
time applications. Alternatively, it is notorious that 
for many computer vision algorithms, implemented 
with parallelism and pipeline on FPGAs can show 
superior performances23. Regardless of the need 
for higher computational performance, the relative 
difficulty and the special expertise required resulted 
in few hardware implementation cases in the 
literature32, 33, 36. 

A remarkable point concerns the choice of the 
hardware implementation. Although this is not 
debated much in the existing literature, the 
performance of a given method on a sequential 
general-purpose computer does not provide a clear 
idea about its performance on parallelized and 
pipelined architectures, such as ASICs, FPGAs or 
Graphical Processing Units (GPUs). A particular 
method that does not seem efficient for a PC based 
implementation may have advantageous properties 
that make it a good candidate for a hardware-based 
implementation using a fixed-point representation 
with small word lengths.

Besides FPGAs, GPUs deliver high performance 
OF computation. A few studies in the collected 
works report the performance of OF computation 
on GPUs34 without much discussion on its precision, 
and the platforms consume significant power. A GPU 
implementation of the Horn and Schunck’s method 
is presented in35, and it uses a multi-resolution 
variant with two levels. In36, 39, there is a comparison 
between a FPGA and a GPU implementation of 
OF computation using a tensor-based OF method. 
Nonetheless, GPUs consume considerably more 
power than FPGAs and need a host PC for operation. 
FPGAs, on the other hand, can work as a stand-
alone platform. These requirements of GPUs make 
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them impracticable for applications with severe 
power and space constraints such as small-scale 
mobile robotics.

Studies on OF computation concentrate mainly on 
the calculation speed. Another significant feature of 
a FPGA implementation that is not talked over in 
the existing literature is the speed-accuracy trade-
off resulting from the use of fixed-point arithmetic 
to implement OF in FPGA hardware. Usually, using 
floating-point operations on FPGAs has major 
speed disadvantages23, 33, 39 while using fixed-point 
decreases the accuracy of the computations. It must 
be pointed out that speed, power consumption, and 
precision are all key performance parameters to 
evaluate the success of an implementation.

In Section 2, the Motion Estimation Problem (MEP) 
is defined. The displacement vector is treated as 
a deterministic signal that can be estimated by 
means of an overdetermined system obtained 
from the points inside a causal neighborhood. The 
main principles of the computation of solutions of 
the DVF estimation problem by means of OLS and 
TLS are investigated as well as the classical Total 
Least Squares (cTLS) and the Generalized Total 
Least Squares (GTLS) are introduced in Section 3.  

Section 4 draws conclusions based upon the results 
shown in Section 3, along with the analysis of 
possible sources of error influencing the solution in 
order to introduce the Generalized Scaled Total Least 
Squares (GSTLS). The metrics used to evaluate 
the proposed algorithms are shown in Section 5.  
Section 6 displays some experimental results related 
to the application of the OLS, cTLS, GTLS, and 
GSTLS approaches for the clear and noise-degraded 
image sequences. The basic issue discussed in this  
Section 7 is about the applicability of the TLS variants. 
Finally, Section 7 summarizes the conclusions about 
the use of the TLS variants in Motion Estimation (ME) 
and Motion Compensation (MC).

The Motion Estimation Problem
Pel-Recursive Estimation
A moving pixel is one whose brightness has changed 
between adjacent frames. Therefore, the objective is 
to discover the equivalent intensity value fk(r) of the 
k-th frame at position r=[x,y]T, and d(r)=[dx,dy ]T the 
corresponding ground truth for thr DV at the present 
point r in the current frame. The DFD is given by
∆(r,d(r)) = fk(r)-fk-1(r-d(r))		  ...(1)

                                 
and the hypothesis of perfect registration of frames 
produces

fk(r)  = fk-1(r-d(r))	 ...(2)                                             

Fig. 1:  Application of motion estimation with 
an Unmanned Aerial Vehicle (UAV)15 

Fig. 2: Motion as brightness change
Fig. 3: Relationship between vectors u, d and 

do5, 9, 10
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The DFD is a function of the intensity differences and 
it embodies the error attributable to the nonlinear 
prediction of the brightness field alongside the DV 
as time progresses. It is apparent from Eq. (1) that 
the relationship between the DVF and the evolving 
intensity field is nonlinear. An approximation of d(r), is 
found by directly minimizing ∆(r,d(r)) straightforwardly 
or by applying the Taylor series expansion of  
fk-1(r-d(r)) about the location (r-do(r)), where do(r) 
represents a forecast of d(r). This results in

∆(r, r-d0(r))= Tfk-1(r, r-d
0(r))u(r)+e(r, d0(r))	 ...(3)        

where u(r)=[ux,uy]
T=d(r)-d0(r) is the displacement 

update vector,  e(r, d0(r)) is the truncation error 
associated to the higher order terms amount to the 
linearization error and  = [d/dx, d/dy]T   represents 
the spatial gradient operator. By applying Eq. (3) to all 
points in a given neighborhood around the working 
pixel, it can be rewritten in matrix-vector form as 

z = Gu + n	 ...(4)                                                        

where the temporal gradients  ∆(r, r-do(r))  have  
been piled to form vector z, matrix G is resulted 
from stacking the spatial gradient operators at each 
observation, and the remaining error terms formed 
the vector n. The relationship between u, d and do 
can be seen on Fig. 1.

The observation vector z contains the DFD 
knowledge on all the pixels in a small pre-specified 
causal neighborhood. Eq. (4) computes a new 
displacement estimate by using information contained 
in a neighborhood containing the current pixel. It is 
mentioned here that if the neighborhood has N 
points, then z and dz are N×1 vectors, G is an N×2 
matrix and u is a 2×1 vector.  Since there is always 
noise present in the data, matrix G and vector z in Eq. 
(4) are in error, that is, Eq. (4) can be rewritten as

z = (G+dG)u +dz	 ...(5)
                                                 

where the linearization error and the observation 
noise after differentiation have been combined to 
form dz.  The spatial gradients and the interpolation 
are calculated as given by the next expressions.

Each row of G has entries [gx, gy]
T corresponding to a 

given pixel location inside a causal mask. The spatial 

gradients of fk-1 are calculated by means of a bilinear 
interpolation scheme (as seen on5). Assuming some 
location r=(x, y)T and 

x

x yy
x x −θ    =   θ     − 

                                              
		  ...(6)

where |x| is the largest integer that is smaller than or 
equal to x, the  bilinear interpolated intensity fk-1(r) 
is specified by

T
00 10

1
01 11

11 yx
k

yx

f f
f ( )

f f−

− θ− θ    
=     θθ     

r  
				    ...(7)
             

where fij=fk-1(|x|+i, |y|+j). Eq. (7) is used for evaluating 
the second order spatial derivatives of fk-1 at  
location r. The spatial gradient vector at r is obtained 
by means of backward differences in a similar way

01 00 11 10

10 00 11 01

(1 )( ) ( )
(1 )( ) ( )

x y y

y x x

g f f f f
g f f f f

θ θ
θ θ

− − + −   
=   − − + −  

           
.      
  	 ...(8)                                                                       

Total Least Squares Techniques For Estimating 
The DVF
Ordinary Least-Squares (OLS) Scheme
The OLS seeks to minimize the error between z 
and Gu like this

− 2

2
min z Gu

	 ...(9)

  
where G ε Pm×n, z ε Pm, m > n. The m observation is z 
= [z1,…,zm ]T are related to the n unknown variables 
u = [u1,…,un ]

T by

Gu = z	 ...(10)
                                                            

The OLS minimizes the sum of squared residuals 
([1, 4, 9, 10, 37]) defined as

r2
OLS =||z-GuOLS||	 ...(11)                                           

where uOLS is the corresponding estimator. If rank(G)=r,  
0<r<n, and the Singular Value Decomposition (SVD) 
of G becomes 
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G=W’Σ’V’T	 ...(12)                                                       

1

r
,
i

i =

= σ∑ , ,
i iw v

	 ...(13)

then the OLS estimate in terms of the SVD of the 
system is

1

1

r
, T
i

i

−

=

= σ∑ , ,
OLS i iu v w z

			   ...(14)
1=( )−T TG G G z 	 ...(15)

= G’z 	 ...(16)                                                      

where G’ is the pseudo-inverse of G. In this case, 
the squared residual can be written as

2

2
2

OLSr = − OLSz Gu 	 ...(17)

2

1
( )

m
T

i r= +

= ∑ ,
iw z

	 ...(18)

2

2( )2
OLSr = − mGG' I z

	 ...(19)
                                      
where Σ’  is a matrix that contains the singular values 
σi of G arranged in decreasing order, the columns 
of W’ and V’ have, respectively, their associated left 
singular vectors wi and right singular vectors vi.

Classical Total Least-Squares (cTLS) Method
The Total Least Squares (TLS) method considers 
the error using the distance between training points 
and the looked-for plane, as an alternative to the 
difference between the dependent variables and 
the estimated values for these variables), which may 
turn out to be proper than OLS prediction. The TLS 
is particularly interesting when there is a significant 
amount of noise in the independent variables.
The Classical Total Least-Squares (cTLS) method  
aims at resolving an overdetermined set of linear 
equations Ax≈b, whenever the the observation b and 
the matrix A have errors.  The system considered 
here comes from Eqs. (3), (4), (6), (7) and (8)  
(refer to 1, 2, 3, 4, 5) with errors occur in z and that G. The 
inherent linearity of the OLS model does not account 
for errors in G due to sampling, measurement, 

computation and modeling. The ill-posed nature of 
differentiation is an illustration of a possible source 
of errors affecting G. Hence, the cTLS error model 
makes it more suitable to DVF estimation than 
OLS.

If the perturbations dG and dz on the data [G; z] 
have zero mean and the covariance matrix for each 
of its rows is equal to the identity matrix scaled by 
an unknown factor (all the errors are independent 
and equally sized), then an exceptionally consistent 
estimate of the real solution of the corresponding 
unperturbed set is computed.

First, in order to clarify and better describe some of 
the possible problems related to the implementation 
of the cTLS technique, this work will present the 
cTLS method, which has unique solution associated 
to having a full-rank matrix [G; z]. This implies a rank 
reduction of [G; z]  to n to make the system Gu≈z 
consistent, zcTLS will be a perturbed version of z 
and it will belong to the range of G. The basic cTLS 
looks for minimizing J(u) where

JcTLS (u) = Π[G; z] -[GcTLS; zcTLS] ΠF2   with	
...(20) 

[GcTLS; zcTLS]TMPm×(n+1)   and  

zcTLS
TM Range(GcTLS). The cTLS solution will be anyone 

satisfying the consistent system of equations

GcTLSu = zcTLS		  ...(21)                                                 

with the associated unconstrained correction matrix 
given by 

[∆GcTLS; ∆zcTLS] = [G; z] - [GcTLS; zcTLS]	 ...(22)          

Eqs. (20), (21), and (22) show that the augmented 
matrix [G; z], which contains noisy data can be 
approximated by a neighboring matrix [GcTLS; zcTLS].  
This new perturbed matrix will correspond to a 
consistent system of equations that relies the closest 
to the original augmented matrix in the Frobenius 
norm sense. The correction matrix [∆GcTLS; ∆zcTLS] is 
the unique minimum Frobenius norm perturbation of 
the assumed overdetermined system of equations 
that transforms it in a consistent system of perturbed 
equations.
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The SVD of the m×n matrix G was given in 
Subsection 2.2.1, and the SVD of the m×(n+1) matrix 
[G; z]is given by

[G; z] =WΣVT 	 ...(23)
                                                                        

1

1

n
T

i i
i

+

=

= σ∑ iw v   
		  ...(24)

where Σ contains the singular values σi of [G; z] 
arranged in decreasing order. Matrices W and V 
contain, respectively, the left singular vectors wi, 
and the right singular vectors υi corresponding to 
the singular values. Then, the basic closed-form 
expression of the TLS solution can be given in terms 
of the SVD:

2 1
1n( )−

+= − σT T
cTLSu G G I G z 	 ...(25)

or, equivalently,

1 1 1
1 1

1 T
,n n,n

n ,n

[ v , ,v ]
v + +

+ +

−
=  cTLSu K

				    ...(26)

Since the last column of V corresponds to a vector 
belonging to the null-space of [G;z] and the cTLS 
solution resides in this subspace, ucTLS is obtained 
from this vector after proper scaling. Eq. (26) is 
more useful for practical purposes than Eq. (25) 
because the cases where the solution is not unique 
are better handled by means of SVD as done by the 
next method6, 7, 8.

Generalized Total Least Squares (GTLS)
The cTLS presents problems when all matrices are 
subjected to error. An extension of the generic TLS 
or cTLS problem, called non-generic TLS, makes 
the problems solvable according to8. The non-
generic TLS problem is still optimal concerning the 
TLS criteria for any number of observation vectors 
if additional constraints are enforced on the TLS 
solution space. This work will call this implementation 
Generalized TLS (GTLS). 

The previous equations apply to the situation 
where matrix [G;z] is full-rank, and its singular 

values are different from each other. In this 
case, the TLS solution is unique. The necessary 
condition for existence and uniqueness of the GTLS  
solution is 3, 7, 8

σn > σn+1	 ...(27)                                                           

and

vn+1,n+1 ≠ 0	 ...(28)

Looking at the condition vn+1,n+1 ≠ 0 alone, the GTLS 
problem is solvable because the last column of V will 
belong to the null-space of [GGTLS;zGTLS] and Eq. (25) 
can be applied without problem. Generic problems 
have more than one solution if there is multiplicity 
of the smallest singular values of [G; z]. In such 
situations, the GTLS computes the minimum norm 
solution as a way of preserving uniqueness. If

σp>σp+1=…=σn+1	 ...(29)                                              

with p≤n  then the SVD of [G;z] is

[G; z] = WΣVT 	 ...(30)

1

1

p
T

i i
i

+

=

= σ∑ iw v   with		 ...(31)                                

p = rank(G)	 ...(32)                                                    

Then, the bas ic closed-form expression of the 
generic TLS solution (Generalized TLS) can be given 
in terms of the SVD:

2 1
1G p( )−

+= − σT T
TLSu G G I G z 		 ...(33)

or, equivalently,

1 1 1
1 1

1 [ ]TG ( ,p ) ( n,p )
n ,p

v , ,v
v + +

+ +

−
=  TLSu K

	 ...(34)
and the squared residual is

2

2
2

GTLSr min= −Gu z
	 ...(35)

2
2

1 1 2 2
1

{1 }
)

p
p i

i p

( )
+ =

+

= σ +
σ − σ

Σ
T
iw z

			   ...(36)
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In the context of motion estimation, there are 
practical problems with the data caused by errors 
due to motion boundaries, occlusion and non-rigidity, 
which are known as outliers (and the TLS problem 
Gu ≈ z becomes non-generic or close to non-generic. 
Mathematically speaking, non-generic TLS problems 
occur whenever G is (nearly) rank-deficient or when 
the system Gu ≈ z  is highly incompatible. G  is 
rank-deficient when its smallest singular value σn 
is approximately zero. A system Gu ≈ z  is said to 
be highly incompatible if its smallest singular value 
σn+1 is approximately equal to σn . The non-generic 
TLS is more ill-conditioned than the full rank OLS, 
which implies that its solution is more sensitive to 
outliers. According to8, 9, 10, the difference between 
the squares of σn  and σn+1 is a reasonable measure 
of how close Gu ≈ z is to the class of non-generic 
TLS problems. If the ratio  

(σ2
n + σ2

n+1)/σn >1			                ...(37)
		                 			 
then the GTLS solution is expected to be more 
accurate than the OLS solution. The performance of 
the GTLS increases with this ratio. For non-generic 
TLS problems, the length of the observation vector 
z  is significant (its Frobenius norm is large), and 
they are close to the singular vectors w or v of G, 
associated with its smallest singular value. Assuming 
that

vn+1,j  = 0, j=p+1,…,n+1, p < n	 ...(38)

and

vn+1,p ≠0	 ...(39)

the non-generic perturbed matrix is specified by

[GGTLS;zGTLS] = WΣGTLSVT	 ...(40)

with ΣTLS= diag( and its associated TLS correction 
matrix is

[∆GGTLS;∆zGTLS] = [G;z]-[GGTLS;zGTLS]	 ...(41)   
                             
 = σpwpvp

T	 ...(42) 

The non-generic TLS solution as defined by 
VanHuffel8 is given by

uGTLS  = (GTG-σ2
pI)

-1GTz	 ...(43)

or, equivalently,

uGTLS  = (-[v1,p,…,vn,p]
T)vn+1,p	 ...(44)

Eqs. (43) and (44) correspond to a solution sought 
in a restricted set of right singular vectors obtained 
by discarding the right singular vectors associated 
with the smallest nonzero singular value that have 
a zero last component.

Relationship between the OLS and GTLS
Eqs. (16) and (43) show that the OLS and the GTLS 
solutions differ on a term dependent on σp+1, which 
can be used as a measure of this difference. So, the 
differences between them will be more pronounced 
as σp+1 increases.

Eqs. (19) and (36) show that the LS technique 
minimizes the sum of squared residuals while the 
TLS approach minimizes a sum of weighted squared 
residuals. Starting from Eqs. (19) and (36), it can be 
shown that  

ΠzOLSΠF = Πwi
TzΠF 	 ...(46)

2 2 1 2 2 1
1 1n n n (F F n )( )− −

+ + ≤    σ− σ σ − σOGTLS OL LSSu zu
	 ...(46)

2 2 2
1 1 1

22 4
2F

n
i n i nr r )−
= + +   =   (− σ −σ σΣ T

GTLS OLS iw z
	 ...(47)  

and

ΠucTLSΠF  ΠuOLSΠF		  ...(48)

Eq. 46 shows that if ΠzΠF  is large or if σn is 
approximately equal to σn+1, then the GTLS will 
differ considerably from OLS. Eqs. (45), (46), and 
(47) show that if z is far from the largest singular 
vectors of G, then OLS will also be very different from 
TLS because the upper bound for this difference is 
proportional to ΠzOLSΠF.

Generalized Scaled TLS (GSTLS) Method
A stationary DVF leads to brutal errors on regions 
related to borders separating objects undergoing 
different motions or when there is occlusion. When 
the GTLS is plainly applied to DVF estimation, the 
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results are far from acceptable for reasons that will 
be discussed later. The number of pixels that the 
GTLS does not solve is greater than the amount of 
unsolved pixels by OLS. In order to overcome this 
problem, GTLS can be used in conjunction with OLS 
to try to process the pixels whose DVFs do not have 
reasonable values. Although these implementations 
of the GTLS did not work as well as we expected, 
it was noticed that when noise is involved, the 
participation of the OLS code decreases. The 
OLS alone rejects a great amount of pixels while 
the participation of the GTLS portion of the code 
increases13, 14, 17.

This section aims to investigate the differences 
in sensitivity between the OLS and the GTLS 
techniques with respect to perturbations in the 
data to formulate a better version of the GTLS 
called Scaled GTLS (GSTLS). We start making 
some assumptions on the perturbation model used 
and show how it affects the TLS behavior in DVF 
estimation when this approach is employed without 
taking an error model into consideration.

The cTLS technique assumes an EIV model which 
considers an exact but unknown linear relationship 
between the variables. [G; z]  are the observations 
of the unkown true values [G0; z0]  and contain 
the measurement errors [∆G; ∆z]. The rows of  
[∆G; ∆z] are i.i.d. with common zero mean vector and 
common covariance matrix C= σv

2 In+1 , where σv
2 is 

unknown. C is a positive semidefinite covariance 
matrix.

Sensitivity Analysis of OLS and GTLS
Depending on assumptions about the noise terms, 
∆G and ∆z several approaches for solving Eq. (4) can 
be obtained. If the entries [∆G; ∆z ] have zero mean, 
the same standard deviation σv and the covariance 
matrix is given by C= σv

2 In+1 , then the GTLS gives 
better estimates than OLS. According to the TLS 
approach, G and z are perturbed appropriately so 
that z≈Gu becomes consistent. The estimate of u in 
Eq. (4) corresponds to a solution of the unperturbed 
set [G-∆G; z-∆z ].  This first case is applicable 
when the linearization error is ignored, the noise 
statistics do not change over time, and the same 
differentiator is used for finding the spatial and 
temporal derivatives. In general, G and z are subject 
to different sources of error.

It should be pointed out that when the data 
significantly violates the EIV model assumptions, 
as is the case with outliers, the TLS estimates are 
inferior to the OLS estimates. OLS also presents 
stability problems (refer to Fig. 7), but they are less 
impressive 10. Thus, as long as the data satisfy the 
EIV model, the TLS will perform better than the OLS, 
regardless of the common error distribution and 
should be preferred to OLS.

Singular Values and Sensitivity of the GTLS
Since the GTLS employs the SVD of G and [G;z], 
the link between the singular values and the system 
controllability as well as stability7, 8. The sensitivity 
and the invertibility of [G;z], can be quantified via the 
SVD and the condition number of [G;z] subordinated 
to the L2 norm is given by

ү =σMAX/σMIN  			   ...(49)

where σMAX  and σMIN are, respectively, the maximum 
and minimum singular values of [G;z]. The above 
definition is a generalization of the square nonsingular 
case8, 18, 19. A moderate condition number guarantees 
that the equations are well-conditioned. Matrices with 
large condition numbers are said to be ill conditioned 
and small perturbations in the system may cause 
large deviations in its response (high sensitivity). 
An orthogonal matrix has condition number ү=1,   
which is a perfect conditioning. Thus, the condition 
number is used as a measure of the sensitivity of 
the system to perturbations. Unfortunately, both the 
singular values and the condition number depend on 
the scaling of the system. σMIN is a measure of rank 
deficiency or collinearity in the system. So, it can also 
be regarded as a measure of invertibility. If its value 
is large, then the system will be less susceptible to 
output saturation (instability).

Some of the problems described on Section 3 were 
caused by errors due to the outliers resulting from 
motion boundaries, occlusion and non-rigidity. In 
the presence of outliers, the GTLS problem Gu≈z 
becomes non-generic or close-to-non-generic. 
Mathematically speaking, non-generic TLS problems 
occur whenever G is (nearly) rank-deficient or 
when the system Gu≈z is highly incompatible. G 
is rank- deficient when its smallest singular value 
σn’  is approximately zero. A system Gu≈z is said to 
be highly incompatible if its smallest singular value 
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σn+1 is approximately equal to  σn. The nongeneric 
TLS is more ill conditioned than the full rank OLS, 
which implies that its solution is more sensitive to 
outliers. According to8, 20, 21, the difference between 
the squares of σn and σn+1  is a reasonable measure 
of how close Gu=z  is to the class of non-generic 
TLS problems. If the ratio (σn - σn+1 )/σn > 1  holds, 
then the GTLS solution is expected to be more 
accurate than the OLS solution. The performance 
of the TLS increases with this ratio. For non-generic 
TLS problems, the length of observation vector z is 
large (the Frobenius norm of z is large) and they are 
close to the singular vectors w or v of G, associated 
with its smallest singular value.

Scaling

C does not have the form σv
2I,  because the z and 

G are corrupted by different errors. G involves the 
calculation of spatial derivatives while z corresponds 
to the temporal gradients that are initially set equal 
to the frame difference. However, both are affected 
by noise. In the subsequent analysis, G and z are 
modeled as being contaminated by additive zero-
mean Gaussian noise with variances equal to σG

2 
and σz

2, respectively, which disturbs Gu=z.

The distributions of gx and gy can be calculated by 
means of Eq. (8) and the following facts:

•	 The image pixels are corrupted by i.i.d. noise, 
with Gaussian distribution, zero mean and 
variance σS

2.
•	 0≤ (1- θy)≤ 1 and 0≤ (1- θx)≤ 1  as in Eq. (6).
•	 The moment generating function of a random 

variable Z=X-Y, where X and Y are zero-
mean normally distributed random variables 
with variances σx

2 and σy
2, respectively, is 

ϕ(t) =exp[(σx
2 +σy

2)/2]. It turns out that both 
are zero-mean normally distributed with 
variances

σgx
2 =  2σS

2(1-2θy+ θy
2), and 

σgy
2 =  2σS

2(1-2 θx+ θx
2).

Now, the covariance matrix of each row of the 
augmented matrix [G; z] can be written as

Cr =2σS
2 

( )
( )

2

2

1 2 0 0

0 1 2 0

0 0 1

y y

x x

 − θ + θ
 
 − θ + θ
 
 
 

where the values of θx and θy were considered 
constant. An important consequence of Gu = z is 
the fact that Cr is different from the TLS assumption 
of a covariance matrix equal to C =σ2In+1,n+1. This 
explains part of the problems described in Section 3. 
Each row of [G; z] has its corresponding error matrix  
Cr ≈ Ci

i, i=1,…,m. In general, those matrices are 
different because of the different θx’s and θy’s  
involved. One way of overcoming this problem is to 
pre-and post-multiply [∆G;∆z] by matrices D and E, 
respectively, leading to the desired distribution of 
errors with C=σk

2In+1,n+1.  as follows:

Cr = [∆G;∆z] [∆G;∆z]T = [∆G’;∆z’] [∆G’;∆z’]T 
     = D[∆G;∆z]E = σk

2In+1,n+1, 

where σk
2 is some constant. It can be shown that the 

same transformation is induced in the augmented 
matrix [G;z]  and the TLS technique can be applied 
to the new scaled system [G’;z’] = D[G; z]E, so that 
its entries are corrected according to the errors in 
[∆G;∆z], then a transformation, such that  D[∆G;∆z]
E = [∆G’;∆z’]. This problem is very difficult to solve 
due to the need of equilibrating all the rows of [G; z] 
at the same time. To avoid this, smoothness will be 
assumed which leads to similar deviations for the 
pixels in the mask. So, θx ≈θy ≈0.5 can be used with  
Cr ≈ Ci

i, i=1,…,m and 

Cr =2σS
2 

0 25 0 0
0 0 25 0
0 0 1

.
.

 
 
 
  

  

which means that the same corrections will be applied 
to all rows of [G; z] because of the assumptions 
made about the covariance matrices Ci

i. Therefore, 
the matrices D and E can be easily found and the 
Generalized Scaled TLS (GSTLS) solution uGSTLS is 
the GTLS resolution of the system
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[G’;z’] = D[G; z]E.

The GTLS does not assume any knowledge on 
the error distribution of [∆G;∆z] and it implies that 
all entries of G and z are affected by uncorrelated, 
equally sized errors. The GTLS estimate will 
be inconsistent, if this assumption is violated. 
Considering the distribution of errors of [∆G;∆z] 
and transforming [G;z] conveniently leads to an 
improved error covariance C and it handles the 
unlikely situation of no error. 

Metrics To Evaluate The Experiments  
The quality of the motion field is assessed using the 
metrics2, 3 discussed below when applied to the video 
sequences displayed in Fig. 4. 

Mean Squared Error (MSE)  
The MSE indicates the degree of similarity of the 
OF among the estimates and the ground truth of 
adjacent frames from sequences with well-known 
motion. We can calculate the MSE in the horizontal 
direction MSEx and in the vertical direction MSEy 
like this

µ
∈

= −∑ 21
xx x[ d ( ) d ( )]

RC
MSE

r S
r r

 and

µ
∈

= −∑ 21
yy y[ d ( ) d ( )]

RC
MSE

r S
r r

where S stands for the entire frame, r denotes the 
pixel coordinates, R and C are, in that order,  the 
number of rows and columns in a frame, d(r)=(dx(r), 
dy(r)) is the genuine DV at r, and d(r)=(dx(r), dy(r))  
its estimation. 

Bias
The bias establishes the correspondence degree 
between the estimated and the original OF and it 
amounts to the average of the difference between 
the true and estimated  DVs for all pixels within a 
frame S, and it is defined alongside the x and y 
directions as

µ1
xx xbias [ d ( ) d ( )]

RC ∈

= −∑
r S

r r                                                                                                                                                      
                                                        
and

µ1
yy ybias [ d ( ) d ( )]

RC ∈

= −∑
r S

r r                          .

	
Mean-squared Displaced Frame Difference
This metric ponders the comportment of the average 
of   the     Squared  Displaced  Frame  Difference  
( 2

DFD ). It represents an evaluation of the progress 
of the  intensity gradient with time as the sequence 
develops by probing the squared difference between 
the present brightness  Ik(r) and its predicted value  
Ik-1(r-d(r)).In ideal circumstances, the is zero, 
meaning that all motion was identified correctly  

(a)

(b)

(c)

Fig. 4: Frames from the video sequences used 
for tests: (a) Synthetic frames, (b) Mother and 

Daughter and (c) Foreman
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(Ik(r)= Ik-1(r-d(r) for all r’s). In practice, the   must be 
small, and it is defined as  

2
12 2

1

K

k k
k

[ I ( ) I ( ( ))]
DFD

RC(K )

−
= ∈

− −
=

−

∑∑
r S

r r d r

with K representing the video length in frames. 

Improvement in Motion Compensation
The average Improvement in Motion Compensation  

IMC(dB)  between two consecutive frames is given 
by

2
1

10 2
1

10
k k

k

k k

[ I ( ) I ( )]
IMC (dB) log

[ I ( ) I ( ( ))]

−
∈

−
∈

 −
 =  

− − 
 

∑
∑

r S

r S

r r

r r d r
 

where S is the frame under analysis. It expresses 
the ratio in decibel (dB) between the mean-squared 
frame difference ( 2

FD  ) defined by

2
12 k k[ I ( ) I ( )]

FD
RC

−
∈

−
=

∑
r S

r r
         

and the between frames k and (k-1). As far as the 
use of this metric goes, we chose to apply it to a 
sequence of K frames, resulting in the following 
equation for the average improvement in motion 
compensation:

[ ]

( )

2
1

2
10 2

1
2

10

K

k k
k

K

k k
k

I ( ) I ( )
IMC(dB) log

I ( ) I ( )

−
= ∈

−
= ∈

 
−  =  

  − −    

∑∑

∑∑
r S

r S

r r

r r d r

When it comes to ME, one seeks algorithms with high 
values of IMC(dB)  . If motion can be detected without 
any error, then the denominator of the preceding 
expression would be zero (perfect registration of 
motion) thus leading to IMC(dB) =∞. 

(a) (b) (c)

Fig. 5: Errors for the noiseless Synthetic sequence: (a) OLS, (b) GTLS, and (c) GSTLS

(a) (b) (c)

Fig. 6: Errors for the Synthetic sequence with SNR = 20dB: (a) OLS, (b) GTLS, and (c) GSTLS
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Experiments and Discussion
Several experimental results that exemplify 
the effectiveness of the GTLS and the GSTLS 
approaches when compared to the OLS. All 
video sequences are 144×176 pixels, 8-bit (QCIF 
format). The algorithms were applied to three image 
sequences: one synthetically produced, with known 
movement; the "Mother and Daughter" (MD) and 

the "Foreman" (FM). For each video sequence, 
two types of experiments were done: one for the 
noiseless case and the other for a sequence whose 
frames are corrupted by a Signal-to-Noise-Ratio  
SNR = 10log10 [σ

2/ σc
2], with σ2 is the variance of the 

original image and σc
2 is the variance of the noise-

corrupted image9, 10. 

Table 1: Results for different implementations, 
SNR = ∞ (noiseless)

	 OLS 	 GTLS	 GSTLS 
 
MSEx 	 0.1548 	 0.1514 	 0.1482 
MSEy 	 0.0740 	 0.0731 	 0.0724 
biasx 	 0.0610 	 0.0601 	 0.0571 
biasy 	 -0.0294 	 -0.0281 	 -0.0274 
IMC(dB)  	 19.46 	 19.76 	 19.98 

2
DFD  	 4.16 	 4.02 	 3.66 

Table 2: Results for different implementations, 
SNR =20dB

	 OLS 	 GTLS	 GSTLS

MSEx	 0.2563 	 0.2514 	 0.2437 
MSEy	 0.1273 	 0.1250 	 0.1226 
biasx	 0.0908 	 0.0868 	 0.0841 
biasy	 -0.0560 	 -0.0545 	 -0.0521 
IMC(dB)   	 14.74 	 14.93 	 15.25     

2
DFD  	 12.24 	 11.92 	 11.04

(a) (b)

Fig. 7:  for frames 11-20 of the noiseless (a) and noisy with SNR = 20dB (b) for the 
Mother and Daughter sequence

Experiment 1 
This sequence has a diagonally moving rectangle 
immersed in a changing background. All the 
background pixels move to the right. Table 1 lists 

the values for the MSEs, biases, 2
DFD  and IMC(dB)   

for the estimated OF obtained with the OLS, 
GTLS, and GSTLS methods in the absence of 
noise. All the algorithms employing the TLS show 
improvement in terms of the metrics used. When 

we compare TLS algorithms with the OLS, we 
see that the improvements are small. Table 1 and  
Table 2 show the values for the MSEs, biases,  

2
DFD  and IMC(dB)  for the estimated OF using the 
OLS, GTLS, and GSTLS techniques for noiseless 
and noisy frames (SNR = 20dB ) of the Synthetic 
sequence, respectively. The results for both cases 

present better values of 2
DFD  and IMC(dB)  as well 

as MSEs and biases for all procedures using the 
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TLS. The best results regarding metrics and visually 
speaking are obtained with the GSTLS algorithm. 
For the noisy case, it should be pointed out the 
substantial drop of the noise interference when it 

comes to the background and the object motion. 
For this algorithm, even the movement around the 
borders of the rectangle is clearer than when the 
OLS estimator is used. 

(a) (b)

Fig. 8:  for frames 31-40 of the noiseless (a) and noisy with SNR = 20dB (b) for 
the Foreman sequence

Experiment 2 
Fig. 7 presents the qualitative performance in terms 

of the IMC(dB)   plots for frames 31-40 of the noiseless 
and noisy (SNR = 20dB ) cases of the MD video 
sequence, for all algorithms implemented. The best 
performance comes from the GSTLS algorithm, 

which provides, on the average, higher IMC(dB)   
values than the OLS and GTLS procedures for 

the noiseless case. For the noisy case, the IMC(dB)   
values are not as high as in the earlier situation. By 
visual inspection, the noise-free case does present 
dramatic differences between motion fields. For the 
noisy case, we were able of capturing the rotation 
of the mother’s head, although inappropriate 
displacement vectors were found in regions where 
there is no texture at all such as the background, 
for instance, there is less noise than when the OLS 
is used.

Experiment 3  
Fig. 8 demonstrates results achieved for frames  
11-20 of the "Foreman" sequence, which has 
frames with abrupt motion. The algorithms relying 
on TLS outperform the OLS method. This sequence 

has shown very good IMC(dB)  values for both the 

noiseless and the noisy cases. By looking at the 
error plots in the motion compensated frames, the 
procedure GSTLS performs better than the OLS and 
the GTLS visually speaking.

Conclusion 
This investigation attacks some concerns related 
to the usance of adaptive pel-recursive procedures 
to solve the problem of estimating the DVF. We 
analyzed the problem of robust estimation of the DVF 
between two consecutive frames, concentrating our 
attention on the noise effect on the estimates. The 
observation z is subjected to independent identically 
distributed (i.i.d.) zero-mean additive Gaussian noise 
n. This entire paper looked at n and the update vector 
u as the only random signals de facto, as well as z 
since it arises from a linear combination of u and 
n. Robustness to noise can be accomplished with 
regularization and by making the regularization 
parameters dependent on data5, 9, 10, 37.  

The motion features offer the easiest knowledge 
on the temporal dimension of a video sequence 
and influence significantly tasks such as video 
indexing. Camera motion-estimation procedures, 
trajectory-matching methods, and aggregated 
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motion vector histogram-based techniques form 
the core of past work in video indexing using motion  
characteristics39. 

The motivation behind this research is the lack of 
a suitable hardware that is capable of computing 
OF vector field in real time for the deployment of 
computer vision in robots since low-power real-time 
performance is of particular importance for mobile 
robotic platforms. Another important aspect for a full 
OF implementation is pre-processing. 

This work aims at the minimization of the DFD at 
each pixel with respect to u, based on an initial 
DVF estimate. Therefore, an estimate of the DV 
d results from knowledge of the initial estimate 
and an update vector. The simplest manner to 
solve this problem is by means of an OLS solution 
that assumes errors only on one column of the 
augmented matrix associated to the overdetermined 
system resulting from the DVF estimation problem. 
Earlier works such as1 considered u was a sample 
of a stochastic process and added a term that 
accounted for truncation error (Wiener-based or OLS 
pel-recursive algorithm). The covariance matrices 
were chosen equal to σu

2 and σv
2I, respectively, 

where I represents the identity matrix. In Section 3, 
it was shown that the application of the GTLS does 
present some improvement when compared to the 
approaches mentioned in the previous paragraph 
due to instability problems of the TLS technique. 
In Section 4, the GSTLS estimator that better uses 
the characteristics and advantages of the TLS 
technique was developed. It models the covariance 
matrix associated with the errors in each row of the 
augmented matrix. In order to do so, the error noise 
on each pixel is assumed normally distributed with 
mean zero. Then, the errors in the entries of G are 
estimated based on pixel noise and considering 
functions of random variables. Since the resulting 
perturbed data covariance matrices no longer have 
the form σv

2I, the data can be transformed, so that 
each row has an error covariance matrix diagonal 
with equal error variances. This means that the basic 
assumption of the classical TLS is now valid. This 
procedure is referred as scaling. When a solution of 
the transformed set of equations is found, it must 
be converted back to a solution of the original set 
of equations8, 13, 14, 17, 18.

A spatially-adaptive approach was used, and 
it consists of using a set of masks, each one 
representing a different neighborhood and yielding 
a distinct estimate. The final estimate is the one 
that provided the smallest DFD. The results from 
some experiments demonstrated the advantages 
of employing multiple masks5, 9, 10.  
 
Still, the technique has some drawbacks4, 8, 13, 14. 
Serious trouble emerges when measuring variables 
with different units. First, consider determining the 
distance between a data point and a curve. More 
specifically, what are the units for this distance? If 
a distance is measured based on the Pythagoras' 
theorem, then it is clear that the estimation 
involves quantities measured in different units, 
and as a result, this leads to worthless outcomes. 
Secondly, after rescaling one of the variables, then 
different outcomes (and a different curve) may 
result. Dimensionless variables can remediate 
the incommensurability problem. This is called 
normalization or standardization. Nevertheless, 
these procedures may lead to fit models that are 
not equivalent to each other. One line of attack is 
normalization by a known (or an estimated) factor 
followed by the minimization of the Mahalanobis’ 
distance between the points and the line, which 
provides a maximum-likelihood solution. The analysis 
of variances can provide the unknown precision.

In short, cTLS and GTLS vary according to the 
units used, i.e., they are scale variant. For a more 
exact model, this property must be enforced. Using 
multiplication instead of addition allows combining 
residuals (distances) obtained in different units. 
Cogitate the problem of fitting a line through data 
points. The multiplication result of the vertical and 
horizontal residuals is twofold the area of the triangle 
whose frontiers are the residual lines and the fit line. 
A better option is the line, which minimizes the sum 
of these areas.

A thought-provoking problem currently under 
investigation is to devise a more intelligent way 
of selecting the neighborhoods upon which to 
build systems of equations and how to handle the 
information on smooth events in a scene. Better 
regularization strategies can improve the estimates 
obtained with TLS variants. 
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