
ORIENTAL JOURNAL OF
COMPUTER SCIENCE & TECHNOLOGY

www.computerscijournal.org

ISSN: 0974-6471
June 2017,

Vol. 10, No. (2):
Pgs. 480-490

An International Open Free Access, Peer Reviewed Research Journal
Published By: Oriental Scientific Publishing Co., India.

Research Summary of A Study for the Estimation of
Legacy Programs for Effective Reengineering

Harmeet Kaur1, Shahanawaj Ahamad2 and Govinder N. Verma3

1Research Scholar PhD.Computer Applications I.K.G.PTU Jalandhar
2DCScSWE college of ComputerScience and Engg University of Ha’il KSA

3Sri Sukhmani Institute o f Engg. & Technology Derabassi Punjab
Corresponding author Email: hrmt01@yahoo.com

http://dx.doi.org/10.13005/ojcst/10.02.32

(Received: May 10, 2017; Accepted: May 29, 2017)

ABSTRACT

	 The present research estimates the efficacy of a legacy program and the areas of its
development. The research also intends to put forward as to what extent reengineering of a legacy
program has to be done on the basis of the estimation approach. The study has tried to outline the
current issues and trends in reengineering of a legacy program from various perspectives. An all-
inclusive literature review reveals that a lot of work has already been piled up with legacy system
estimation and the reengineering domain, yet the basic assumptions of Complexity, Quality and Effort
have not been worked out collectively. Hence the present research underlines this very maxim and
studies the reengineering of a legacy program on the paradigms of Quality, Complexity, and Effort
Estimation collectively. The findings put forward an equation and reengineering scale which would
be highly compatible with present technology for the feasibility of an effective reengineering.

Keyword: Legacy, CQE, COBOL, Softgoal, Reengineering

INTRODUCTION

	 The working terminology of a legacy
system was created some 20 to 30 years ago by
legacy software engineers which was typically
written in COBOL, FORTRAN, C or C++ and was
called as a legacy program. Its relevance has never
lost its grounds. Legacy frameworks are thought
to be conceivably risky by numerous software

engineers. These programs face certain difficulties
with the latest in technology as legacy software runs
on obsolete hardware. The expenses of keeping
such legacy programs may inevitably exceed as
the expenses of replacing both the software and
the hardware are way high. Thus, Reengineering
offers a way to deal with migration of legacy program
towards an evolvable system in a disciplined way.
The reengineering process might be seen as

481 Kaur et al., Orient. J. Comp. Sci. & Technol., Vol. 10(2), 480-490 (2017)

applying engineering principles to a current legacy
program so as to meet new requirements. So, in
order to be successful, reengineering requires
insight from various point of view.

	 T h e r e s e a r c h i s f o c u s e d o n
complexity,Quality and effort(CQE) estimation of
legacy program for effective reengineering. While
zeroing down the research problem, a plethora of
literature was explored including journals, research
papers, books etc. With the advancement in the
field of technology, it is important that one should
enhance the coding of the software systems so as to
meet the requirements of the ever growing software
market. As a matter of fact, the legacy system is an
important asset of an organization that cannot be
discarded as it holds plenty of the resources of the
organization. The research was carried out so as
to decide whether the reengineering of the legacy
systems is to be undertaken or not.

Literature Review
Complexity
	 The software complexity has been
measured by many researchers using various
affecting attributes such as control flow paths
McCabe [1976]. Munson & Khoshgoftaar[1989]
have examined recent investigations in the area of
software complexity. Munson & Khoshgoftaar[1992]
done study on measuring dynamic program
complexity. Kim et.al.,[1995] presented a new
framework for analyzing the scope of metrics to
evaluate complexity of object-oriented programs.
Munson & Hall [1995] conducted a research
on dynamic program complexity and software
testing. Kim et.al.,[1996] have proposed new
metrics for computing the program complexity of
object-oriented program. Dantsin[1997] surveyed
various complexity results on different forms of
logic programming.. Halstead [1977] worked on
the volume of operands and operators. Wang
and Shao[2003] conducted study on cognitive
complexity. Cherkaskyy & Sadek [2004] have
studied the various levels of program complexity.
Cardoso et.al., [2006] have surveyed findings
from neighboring disciplines on how complexity
can be measured. Misra[2007] proposed an
improved cognitive complexity measure. Gupta
& Chhabra[2009] proposed new cognitive-spatial
complexity measures. Srivastav et.al.,[2010]

have proposed a new technique to calculate the
complexity of faulty program slices. In an another
study Kumar & Kaur[2011] have compared the
complexity in accordance with object oriented
metrics proposed in 90’s. Debbarma et.al.,[2013]
carried a review and analysis of software complexity
metrics in structural testing.

Quality
	 Stockman et.al., [1990] presented a
framework for the measurement of software quality..
Wells et.al.,[1995] proposed customized tools for
software quality assurance and reengineering. Basili
et.al.,[1996] focused on a validation of object oriented
design metrics as quality indicators. Khoshgoftaar
& Allen[1997] studied the impact of costs of
misclassification on software quality modeling.
Chung et.al.,[2000] worked on non-functional
requirements in software engineering. Cysneiros
& Leite[2002] non-functional requirements from
elicitation to modeling. Khoshgoftaar et.al.,[2002]
worked on quality driven software re-engineering.
Hill et.al.,[2004] worked on quantifying non-
functional requirements a process oriented
approach. Khoshgoftaar et.al.,[2004] undertook
work on unsupervised learning for expert-based
software quality estimation. Kassab et.al.,[2008] a
metamodel for tracing non-functional requirements.
Retna et.al., [2010] presented a study on quality of
software and the metrics for evaluation. Xu.,[2010]
presented an empirical study on the procedure
to derive software quality estimation models.
Fontana & Maggioni [2011] studied metrics
and antipatterns for software quality evaluation.
Sun[2011] presented knowledge for software
quality control and measurement. Bajpai & Gorthi.,
[2012] on non-functional requirements a survey.
Trivedi & Kumar.,[2012] focused on software
metrics to estimate software quality using software
component reusability..

Effort
	 Symons[1988] worked on function
point analysis difficulties and improvements.
Mukhopadhyay et.al.,[1992]examining the feasibility
of a case-based reasoning model for software effort
estimation. Clemons et.al.,[1995] proposed an
integrative framework for identifying and managing
risks associated with large scale reengineering
efforts. Subramanian & Breslawski.,[1995] undertook

482Kaur et al., Orient. J. Comp. Sci. & Technol., Vol. 10(2), 480-490 (2017)

an empirical analysis of software effort estimate
alterations. Shepperd et.al., [1996] studied effort
estimation using analogy. Gray et.al.,[1999] studied
factors systematically associated with errors in
subjective estimates of software development effort
the stability of expert judgment. Clark[2000] focused
on quantifying the effects of process improvement
on effort. Hill et.al., [2000] presented expert’s
estimates of task durations in software development
projects. Jorgensen and Sjoberg[2001] studied the
impact of effort estimates on software project work.
Jorgensen[2004] presented a review of studies on
expert estimation of software development effort.
Kaczmarek & Kucharski[2004] worked on Size and
effort estimation for applications written in java.
Jorgensen[2005] worked on practical guidelines for
expert-judgement-based software effort estimation.
Grimstad et.al.,[2006] focused on software
effort estimation terminology the tower of babel.
Menzies et.al.,[2005] worked on validation methods
for calibrating software effort models..Sandhu
et.al.,[2009] proposed a model for estimation of
efforts in development of software systems.

Research Problems and Issues
	 Since the introduction of the legacy
software systems, they have proved quite useful to
the organization not only catering to the business
domain of the organization but also to keep the
data intact and safe. Despite their relevance, being
outdated these legacy systems are not easy to get
discarded. Replacing legacy systems is a costly
affair. Keeping these things in mind it is highly

suggested to upgrade these systems so that they
can easily meet the requirements of the ever-
changing software industry. Since the organizations
are concerned about the complexity, cost, effort
and quality; it is necessary to have the knowledge
of the same. From the literature survey and simple
meta-analysis, it becomes evident as to what extent
it is vital to consider CQE approach before taking
decision whether the reengineering of the system
will be beneficial or not.

ISSUES

The legacy programs are written in archaic •	
languages
These are utilizing old software procedures for •	
the development of the program
Lack of documentation, maintenance and •	
specialists
Legacy program code is hard to re-module, •	
extensive and complex
It is difficult to comprehend the rationale of the •	
legacy program
Integration with newer systems may also •	
be difficult because new software may use
completely different technologies
Legacy systems can be hard to maintain, •	
improve, and expand because there is a
general lack of understanding of the system

Research Objectives
	 The present research has put forth
an extensive approach on the paradigms of
reengineering as complexity, quality and effort as
its basic estimation parameters. As a lot of work
has already flooded the reengineering market
in and around the globe, the present approach
focuses on the advantages of complexity, quality
and effort over other parameters of reengineering.
As reengineering has earned its global repute
for its usability, with the changing times and
spread of technology the complexity, quality and
effort approach has advantages of its own. The
advantages of using complexity, quality and effort
lies in the fact that at the customers end it increases
the quality of the end product which at times suffer
because of the above mentioned approaches.
Also it must be added that the legacy code on to
which a given organization works ensures that the
reengineering has to take place in such a way that a
legacy code has to be upgraded to meet the present

Fig. 1: Showing an overview of the
methodology

483 Kaur et al., Orient. J. Comp. Sci. & Technol., Vol. 10(2), 480-490 (2017)

beside future’s technical needs and also should not
affect their business during such developments. The
complexity, quality and effort approach also has
another key feature of keeping the reengineered
legacy code as simple as it can be which rules out
the complexity factor to enhance its prospect. The
objectives of the present study are summed up as
under:

To measure the complexity of the legacy •	
program
To measure the quality of the legacy program•	
To measure the effort of the legacy program•	
Development of framework•	
Develop a model for CQE estimation•	

To Develop an equation for CE estimation•	
To develop an equation for quality estimation•	
To develop a reengineering scale for legacy •	
system
To measure the feasibility of reengineering a •	
legacy program

Research Methodology
	 It is a well known fact that organizations
cannot progress without doing research activities.
Hence, in the present problem, exploratory research
is used which helps to diagnose a situation and
thinking of alternatives to discover new ideas
and concepts. In this research, mixed research
methodology i.e. qualitative and quantitative is used.

Fig. 2: Framework for the Estimation of Legacy Programs for Effective Re-engineering

484Kaur et al., Orient. J. Comp. Sci. & Technol., Vol. 10(2), 480-490 (2017)

Common type of qualitative research methodology
is literature survey, experimental studies and others.
In quantitative methodology common techniques
are case studies, biographical studies etc.

	 Va r i ous es t ima t i on t echn iques ,
reengineering models and their application
were studied. Also the terms viz. legacy code,
legacy system and legacy program are used
interchangeably in the present research. The
present work was undertaken to effectively
reengineer the legacy program by estimating
CQE. The below mentioned flow chart illustrates
the various stages of CQE estimation of a legacy
program.

The various methodologies for CQE estimation
are:
Complexity Estimation
	 The research has used Line of Code
Method, Information Flow, Cyclomatic Complexity,
Halstead’s Method and Cognitive Weights
Method.

Effort Estimation
	 Effor t estimation is the way toward
figuring the most practical utilization of effort
required to create or keep up legacy software
based on uncertain, incomplete and /or noisy
input. The preferred outcomes can be utilized as
input to planning a project, budget, speculation
investigation, procedures and bidding rounds for
better outcomes. Approved overviews on estimation
practice propose that expert estimation is the
prevailing tool while assessing the software effort.

Quality Estimation
	 The research used Non-Functional
Requirement method (NFRs), Software Quality
Goal and Logic Artifacts.

	 Considering the objectives of this
research, numerical values obtained as output
are used for the development of the equation
using regression modeling which is known as CE
equation. The values obtained from this equation
gives the complexity and effort quotient of the
legacy program under study and it fits in all the
languages. Further, the values obtained from the
CE equation were used for estimating the source

code quality of legacy program. This further leads
to the development of the reengineering scale. The
values of the source code quality i.e. Q were fixed
between 0 to 10 using linear interpolation method so
that it becomes convenient to take decision whether
the reengineering of the legacy code is feasible or
not.

	 The research work was further carried
out to estimate the quality of the legacy program.
For measuring the quality of the legacy program,
qualitative and quantitative methods were used. The
NFR and softgoal interdependency graph method
were used for measuring the quality of the legacy
program. As the non functional requirements play
an important role in the quality of the software, they
cannot be ignored. The SIG method was applied on
procedural as well as object oriented programming
language. Also, the SIG method gave the results
on the role of the NFR in measuring the quality of
the software. To have more concrete results on the
importance of NFRs in quality of the software, the
study was further extended and field surveys were
done to collect the data on the role of the NFRs. For
the collection of the data, questionnaire was used.
The data hence collected was further analyzed
using total weight method to know the role of NFRs
in the quality of the software.

Solution Approach
	 To have a solution of the research problem,
a framework for the estimation of legacy programs
for effective re-engineering has been suggested
in fig.-1. This frame work consists of eight phases,
the phase-I is for meta-analysis and to consider
the legacy programs written in COBOL, C and
C++. The meta-analysis helped to identify 68
variables out of these size, complexity and NFR
are of the utmost importance. Phase-II is for the
CQE estimation by applying few selected methods
of estimation available in the literature. This phase
gave the estimation results of complexity, quality
and effort. Phase-III consisted of analysis of results
of C and E and to derive a relation between them.
In this phase various models were developed
using tools used in model development. In phase-
IV an equation between C and E was developed.
For developing the equation regression modeling
was applied on the results. During phase-V of the
research, dependency of the quality on various

485 Kaur et al., Orient. J. Comp. Sci. & Technol., Vol. 10(2), 480-490 (2017)

factors based on previous work and result obtained
was studied mathematically. In this phase, to have
more precise results on quality, the role of NFR
using questionnaire, soft-goal interdependency
graph method was also done. Quality of the
legacy program was also analysed using expert
judgement method. In phase VI – we have derived
an equation between CQE. In this phase based
on the dependency of quality on complexity, effort
& development time an equation is derived to
represent the source code quality. Phase-VII deals
with the validation of the results obtained during the
estimation. Phase - VIII dealt with developing re-
engineering scale based on the value of quality.

Research Contribution
	 The literature review of the present
research revealed that the reengineering of a
legacy program was previously done either on the
basis of complexity or quality or effort. The previous
researches were devoid of a collective approach
which could have reengineered a legacy program
on all the three parameters collectively. Hence the
contribution of the present research lies in the fact
that it serves as the basis for the reengineering
of a legacy program based on CQE approach
collectively. Also the contribution of the research
eliminating the problems of the CQE estimation of
a legacy program for effective reengineering can
be summed up as follows:

Develop software which will help in CQE •	
estimation and to develop a framework that
helps to improve legacy system/migrant system
by following suggested measures.
Develop and design collection of comprehensive •	
soft-goal interdependency graphs as they
pertain to various NFRs of large procedural
and object-oriented legacy systems.
The development of the equation for complexity •	
and effort estimation known as CE equation of
the legacy system for effective reengineering.
The equation can be applied on legacy system
written in any language i.e. procedural and
object oriented language.
The design and development of the Complexity, •	
quality and effort estimation models to address
specific estimation objectives. Develop a
reengineering scale which serves as the basis
to see the utility of a legacy program to be

reengineered or not.
The design and implementation of reengineering •	
scale that allows the identification of levels to
decide whether the effective reengineering of
the legacy system is feasible or not.
The design and implementation of prototype •	
system/models that assists in effective
reengineering process that per tains to
enhancements of legacy system.

Result and Discussion

	 This section deals with the various
outcomes of the result for the CQE estimation of the
legacy programs for their effective reengineering.

CQE Estimation Framework
1.	 To know the factors impacting CQE, simple

meta- analysis was done and eight major
dimensions were identified and sixty eight
resultants parameters were explored. The
results of the same were published in
(Scope of Exploring CQE Dimensions in
Reengineering of Legacy Program Harmeet
Kaur Shahanawaj Ahamad Gurvinder N.
Verma International Journal of Advanced
Research in Computer Science and Software
Engineering, Volume 3, Issue 7, July
2013).

2.	 Factors responsible for the complexity of the
legacy program were studied and identified
the elements for the complexity of a leagacy
program. (Elements of legacy program
complexity Harmeet Kaur, Shahanawaj
Ahamad, Gurvinder N. Verma International
Journal of Research in Engineering and
Technology eISSN: 2319-1163)

3.	 For complexity estimation, the programs
written in COBOL, C and C++ were selected
from open source and complexity was
estimated using various methods e.g
Mc Cabe method, Halstead method etc.
The obtained results were published in
(legacy program estimation Harmeet Kaur,
Shahanawaj Ahamad, Gurvinder N. Verma
International Journal of Computer Science
and Information Security, Volume 14, No. 02,
February 2016).

4.	 Role of quality parameters and sub-
parameters in the development of the quality

486Kaur et al., Orient. J. Comp. Sci. & Technol., Vol. 10(2), 480-490 (2017)

software system were also scrutinized. The
findings revealed that Quality of software
is affected by a number of parameters e.g.
conceptual integrity is influenced by variable
name and coding style whereas availability
is affected by malicious attacks, system load
etc. (Identification & Analysis of Parameters
for Program Quality Improvement: A
Reengineering Perspective Computer
Engineering and Intelligent Systems,
ISSN 2222-1719 (Paper) ISSN 2222-2863
(Online))

5.	 Quality estimation was done using conceptual
and empirical methods. Role of NFRs were
studied and the results revealed that in an
online banking system client is more worried
about the security followed by performance,
usability and availability of the online
banking services. It was also observed that
reliability, visibility and confidentiality are
closely related with total weightage score.
The results were published in (A case study
upon non-functional requirements of online
banking system Harmeet Kaur, Shahanawaj
Ahamad, Gurvinder N. Verma International
Journal of Computer Applications Technology
and Research Volume 4– Issue 4, 220 - 225,
2015, ISSN:- 2319–8656).

6.	 To enhance the accuracy of results an
equation known as source code quality
equation was developed. This equation is
used to measure the source code quality of
a legacy program.

	 The derived equation can be used to
estimate the source code quality of almost all the
languages. Where K is some Constant and its value
is taken in such a way that the resultant value lie
between 1 to 10 using linear interpolation i.e k =
10/max (Q)

7.	 Quality was estimated using soft goal
interdependency graph method. Design

patterns of the procedural and object
oriented languages were studied and their
interrelationship and role were observed
using SIG.

8.	 Effort estimation was done using various
methods e.g. Exper t judgement, FP,
COCOMO I & II etc. The average values
of the results so obtained were taken and
relation between complexity and effort was
studied.

9.	 The research further proceeds to develop an
equation using regression modeling method
between complexity and effort. The equation
is known as CE equation and can be used to
estimate CE of almost all the programming
languages.

	 E=17.84+0.19C
	 Where E is ef for t and C refers to

complexity.
10.	 To check the feasibility of reengineering, a

reengineering scale was developed. The
scale was developed using the values of
Q and these were interpolated between
0-10 using linear interpolation. The scale
is used to make a decision whether the
reengineering of the system is to be done
or not.

Implementation
	 The programs written in COBOL, C and
C++ were taken from the open source and the
selected estimation methods were applied on these
to calculate CQE factor. The results of the estimation
were compared with the programs, case studies
and industrial data. It was observed that the results
of CE were nearly same as the data taken from
the field study. Using linear regression modeling
an equation between C & E was developed. The
developed equation shows the relation between C
and E. The factors affecting quality were analysed
using theoretical and mathematical methods which
derived the relationship between complexity, cost,
effort and quality. The values so obtained measures
the source code quality. The values of source
code quality are fixed between 0 to 10 using linear
interpolation and the same were used in developing
reengineering scale using ordinal scale method as
mentioned in the literature. The scale will be used
in deciding whether the reengineering of the legacy
program/software is to be done or not.

487 Kaur et al., Orient. J. Comp. Sci. & Technol., Vol. 10(2), 480-490 (2017)

Validation
	 For validation various methods were used
for estimating complexity effort and development
time.

Empirical Validation
	 Empirical validation incorporates validation
of different results on real projects. To validate
the outcome, programs written in COBOL, C
and C++ were taken from the industry dealing
with reengineering and estimation. The projects
incorporate modules, classes, libraries etc.
Complexity, effort development time and so on were
ascertained for every part of the three projects.
Then overall complexity, effort development time
etc. were computed. The outcomes so acquired
were contrasted with the outcomes of the legacy
programs taken from the open source. It was
observed that the outcomes so obtained were at par
with the outcomes acquired from open source.

Validation for Regression Modeling used in
Quality Estimation
	 Average values of all the parameters
calculated for complexity, effort development times
etc. were used for the development of CE equation.
The equation was developed using regression
modeling and was validated using cross validation
method. For the development of CE 15 results were
randomly selected and were divided into two parts

i.e. of 7 and 8 programs each. The first part of the
sample is for exploration and model formulation
and second part is for model validation, formal
estimation and testing.

	 For the validation of the CQE estimation,
the data were taken from the industries of repute
which are dealing in the software estimation. The
results which were hence gathered from the industry
were of the same value as the results obtained
during the CQE estimation. This indicates that the
results validate for the construction of reengineering
scale and CQE equation. Also the desired results
validate the application of CQE estimation on other
programming languages as well.

CONCLUSION

	 In this study CQE is estimated by using
various methods as mentioned in the literature. A
comparison was done between the parameters
measured in COBOL, C and C++ and their
interrelationship was also studied. In the first part,
the research focused on most of the factors which
affects the complexity of code. In the beginning five
methods were selected for complexity estimation.
To enhance the accuracy of the results few more
method were later included so that it covers almost
all the factors that contribute in complexity of the
software. Based on the results, an equation known

Fig. 3: Model for CQE estimation of legacy program

488Kaur et al., Orient. J. Comp. Sci. & Technol., Vol. 10(2), 480-490 (2017)

as CE equation was proposed. The proposed
equation was formulated to manifest the factors of
complexity and effort and to show the interrelation
between C & E. The equation can also be applied
to codes which are written not only in a procedural
language but also in an OO language since
multi-paradigm encompasses both of them. The
comparative case studies for CE have shown that
CE has the following properties:

combines many aspects in one measurement •	
formula
makes more sensitive calculation•	
includes more complexity factors•	
includes effort besides complexity•	
gives interrelation between C and E•	

	 The higher the CQ, the better the code
is. With the increments of C, E increases; with the
decrement of C, E decreases. Higher FP indicates
better functionality and merits.

Limitations and Future Scope
	 This research has some limitations
which can regress the research work if the domain
specific, development environment and tools are
not found. The research findings includes verdict
on reengineering, reuse of existing component
and viability of a legacy program. The risks related
to the research results are level of robustness of
technology applied to carry out the research and

accuracy of existing methods. One of the major
challenges that a legacy program faces is the
usability of its applications. In the absence of its
documentation and experts, it becomes a daunting
task to reengineer a legacy program. Also the
users are at times reluctant to reengineer a legacy
program in their organization.

	 All the existing metrics have their own
merits. The goal of the thesis is not to criticize
those metrics, equations and scales or to claim
their inabilities but to understand their benefits and
propose equations and scales based on some of
them. There are also other metrics and methods
used for estimating complexity, quality, effort, cost,
development time etc. but they are out of research
scope of the present study. Further research is
required to add more CQE factors and simplify
the equation and scale so that it becomes more
practical. Although the study has tried to include
most of factors, yet it has the possibility of adding
few more factors.

ACKNOWLEDGEMENT

	 First I am thankful to the research
supervisors (Dr.) Shahanawaj Ahamad,and (Dr.)
Govinder Verma for their timely, scholarly and
technical guidance and support. I am grateful for
the support of the Department of CSE at the Sri
Sukhmani institute of engineering and Technology,
where I conducted this research.

REFERENCES

1.	 McCabe.A Complexity Measure. IEEE Trans.
Soft-ware Eng., 1976; 2: 308-320.

2.	 Munson, J.C., Koshgoftaar, T.M. Measuring
Dynamic Program Complexity. IEEE
software.1992; 9:48-55.

3.	 Kim, K., Shin, Y., Wu, C. Complexity
measures for object-oriented program
based on the entropy. in Proceedings of
the 2nd Asia-Pacific Software Engineering
Conference 1995; 127-136.

4.	 Munson, J.C. Hall, G.C.Dynamic Program
Complex i ty and Sof tware Test ing.
Proceedings of the IEEE International Test
Conference on Driving Down the Cost of

Test; 1995 730-737.
5.	 Kim, E.M. Heur ist ics for computing

attribute values of C++ program complexity
metrics.1996 IEEE.

6.	 Dantsin, E., Eiter, T., Gottlob, G., Voronkov,
A. Complexity and expressive power of
logic programming.Proceedings., Twelfth
Annual IEEE Conference on Computational
Complexity;1997: 82 – 101.

7.	 Halstead, M. Elements of Software Science,
Elsevier North-Holland, New York,1977.

8.	 Shao, J., Wang, Y. A New Measure of
Software Complexity Based on Cognitive
Weights.

489 Kaur et al., Orient. J. Comp. Sci. & Technol., Vol. 10(2), 480-490 (2017)

9.	 Canadian Journal of Electr ical and
ComputerEngineering.2003; 28(2): 69
–74.

10.	 Cherkaskyy ,M., Sadek, A.S.The levels of
program complexity. Proceedings of the
International Conference on Modern Problems
of Radio Engineering, Telecommunications
and Computer Science;2004.

11.	 Cardoso,J. et.al., A Discourse on Complexity
of Process Models. International Conference
on Business Process Management;2006:117-
128.

12.	 Misra ,S. Cognitive Program Complexity
Measure 6th IEEE International Conference
on Cognitive Informatics;2007.

13.	 Srivasatav, M. et.al., An Optimized Approach
of Fault Distribution for Debugging in
Parallel. Journal of Information Processing
Systems.2010;6(4):.537-552.

14.	 Kumar, R., Kaur G.Comparing Complexity
in Accordance with ObjectOr iented
Metrics.International Journal of Computer
Applications.2011;15(8):pp.42-45.

15.	 Sinclair G. Stockman et.al.,A Framework for
Software Quality Measurement. IEEE journal
of selected areas in communication.1990;
vol.8(2):224 -233.

16.	 Wells,C.H. et.al.,Customized tools for software
quality assurance and reengineering.
Proceedings of 2nd Working Conference on
Reverse Engineering.1995.

17.	 Basili, V. R. et.al.,A Validation of Object-
Or iented Design Metr ics as Quality
Indicators. IEEE Transactions on Software
Engineering.1996;22(10):751-761.

18.	 Koshgoftaar, T.M., Allen, E.B.The Impact of
costs of misclassification on software quality
modeling.Proceedings Fourth International
Software Metrics Symposium,1997.

19.	 Chung, L.,Nixon, B., Yu, E., Mylopoulos, J.
Non-Functional Requirements in Software
Engineering. Norwell,Massachusetts: Kluwer
Academic Publishers, 2000.

20.	 Cysneiros,L.M., Leite, J.C.S. do Prado.Non-
functional requirements from elicitation to
modelling languages.Proceedings of the
24th International Conference on Software
Engineering,2002.

21.	 Hill, Raquel et.al.,Quantifying Non-Functional
Requirements: A Process Or iented

Approach”Proceedings of the 12th IEEE
International Requirements Engineering
Conference,2004.

22.	 Zhong, S., Khoshgoftaar, T. M., Seliya,
N.Unsupervised Learning for Expert-
Based Software Quality Estimation.IEEE
International Symposium on High Assurance
Systems Engineering,2004.

23.	 K a s s a b, M . , O r m a n d j i eva , O. ,
D a n eva , M . A Tra c e a b i l i t y M e t a -
model for Change Management of
Non-Funct iona lRequi rements.Six th
International Conference on Software
Engineering Research, Management and
Applications.2008 :245-252.

24.	 Xu, Jie., Ho, D., Capretz, L. F. An Empirical
Study on the Procedure to Derive Software
Quality Estimation models. International
Journal of Computer Science & Information
Technology.2010;2(4):.1-16.

25.	 A r c e l l i , F. F. , M a g g i o n i , S . M e t r i c s
and Antipatterns for Software Quality
Evaluation.IEEE 34th Software Engineering
Workshop,2011.

26.	 Sun ,H. Knowledge for Software Quality
Control and Measurement. International
Conference on Business Computing and
Global Informatization,2011

27.	 Bajpai,V., Gorthi,R.P.On Non-Functional
Requi rements : A Sur vey.Students ’
Conference on Electrical, Electronics and
Computer Science (SCEECS), 2012 IEEE.

28.	 Trivedi, P., Kumar, R. Software Metrics to
Estimate Software Quality using Software
Component Reusability. International Journal
of Computer Science.2012;9(2);pp.144-
149.

29.	 Mukhopadhyay,T. et.al.,Examining the
Feasibility of a Case-Based Reasoning
Model for Software Effort Estimation.MIS
Quarterly/June 1992: 155-171.

30.	 Clemons, E.K. et. al., An Integrated
Framework for Identifying and Managing
Risks Associated with Large Scale
Reengineering Efforts. Proceedings of the
28thHawaii International Conference on
System Sciences.LosAlamitos, CA: IEEE
Computer Society Press, 1995.

31.	 Subramanian, G., S. Breslawski,S.An
Empirical Analysis of Software Effor t

490 Kaur et al., Orient. J. Comp. Sci. & Technol., Vol. 10(2), 480-490 (2017)

Estimate Alterations. Journal of Systems
and Software.1995; 31 (2) :135-141.

32.	 S h e p p e r d M . , S C H O F I E L D, C . ,
KITCHENHAM, B.Effort estimation using
analogy.Proceedings of the 18thInternational
Conference on Software Engineering,
1996:170-178

33.	 Clark,B.K. (2000),Quantifying the Effects
of Process Improvement on Effort”, IEEE
Software.2000:pp. 65-70.

34.	 H i l l , J. , Thomas, L .C. , A l len , D.E.
(2000)”Exper ts ’ Est imates of Task
Durations in Software Development
Projects. International Journal of Project
Management.2000;(18):13-21.

35.	 Jorgensen, M., Sjoberg, D. I. K. Impact of
effort estimates on software project work.
Information and Software Technology.2001;
43(15); 939-948.

36.	 Jørgensen, M. A Review of Studies on Expert
Estimation of Software Development Effort.
The Journal of Systems and Software.

2004;70:37–60.
37.	 Kaczmarek, J., Kucharski, M. Size and

effort estimation for applications written
in Java. In format ion and Sof tware
Technology. 2004;46(9):589-601.

38.	 Jørgensen, M. (2005). Practical Guidelines
for Expert Judgement-Based Software Effort
Estimation. IEEE Software 2005; 22(3), 57-
63.

39.	 Grimstad,S., Jorgensen,M., Ostvold.,K.M.
Software effort estimation terminology the
tower of Babel. Information and Software
Technology.2006; 48:302–310.

40.	 Menzies ,T., Port,D.,Chen,Z., and Karen,L.
Validation Methods for Calibrating Software
Effort Models. IEEE transactions on Software
Engineering. 2006;32(11):1-13.

41.	 Sandhu,P.S., Prashar,M., Bassi,P., and
Bisht,A. A Model for Estimation of Efforts
in Development of Software Systems.
International Journal of Computer, Electrical,
Automation, Control and Information
Engineering.2009;3,(8):1931-1935.

