
ORIENTAL JOURNAL OF
COMPUTER SCIENCE & TECHNOLOGY

www.computerscijournal.org

ISSN: 0974-6471
June 2017,

Vol. 10, No. (2):
Pgs. 359-363

An International Open Free Access, Peer Reviewed Research Journal
Published By: Oriental Scientific Publishing Co., India.

Secure ASP.NET Web Application by Discovering Broken
Authentication and Session Management Vulnerabilities

Rupal R. Sharma1, Ravi K. Sheth2

1M.Tech in Cyber Security, Student, Department of Information Technology,
Raksha Shakti University, Ahmedabad, Gujarat, India

2Department of Information Technology,
Raksha Shakti University, Ahmedabad, Gujarat, India

Corresponding author Email: Rupsharma23@gmail.com

http://dx.doi.org/10.13005/ojcst/10.02.15

(Received: March 25, 2017; Accepted: June 03, 2017)

ABSTRACT

	 Today, web application security is most significant battlefield between victim, attacker and
resource of web service. The owner of web applications can’t see security vulnerability in web
application which develops in ASP.NET. This paper explain one algorithm which aim to identify
broken authentication and session management vulnerability. The given method of this paper scan
the web application files. The created scanner generator relies on studying the source character
of the application limited ASP.NET files and the code be beholden files. A program develop for this
motive is to bring about a report which describes vulnerabilities types by mentioning the indict name,
disclose description and its location. The aim of the paper is to discover the broken authentication and
session management vulnerabilities. The indicated algorithm will uphold organization and developer
to repair the vulnerabilities and recover from one end to the other security.

Keywords: Session management, session hijack, Broken
Authentication, Web security, ASP.NET

INTRODUCTION

	 World Wide Web has evolved from a
position that delivers static pages to a proclamation
that supports distributed applications, met with as
internet applications and become a well-known of
the most universal technologies for information and
service delivery around Internet. The increasing
currency of World Wide Web application can

be showing several factors, including remote
accessibility, cross-platform compatibility, hasty
development, etc. Website security is a part of
Information Security which deals with security of
the website, World Wide Web services and web
applications1. The open web application project
defined website’s top vulnerabilities which is listed
below2.

360 Sharma & Sheth, Orient. J. Comp. Sci. & Technol., Vol. 10(2), 359-363 (2017)

OWASP Top Ten vulnerabilities2

	 The OWASP define that web application
related functions devoted to authentication and
session management are not implement suitably
which allow attacker to compromise key, password,
session token or to exploit freak identities and
implementation flaw3.

	 Web application security statistics report
also shows average vulnerability age by risk which
display below4. Following chart show that how many
days need to fix or recover any web application
which is affect by different attacks? By analysis we
concluded that session management and broken
authentication vulnerabilities are very harmful for
web application. It is take more days to recover the
web application.

	 To build custom session management
and authentication scheme correctly is a complex
process for the Developers. These custom scheme
have flaws in well-known areas like as create
account, logout, timeout, secret question, forget
password etc. It is very difficult to find a flaw for
unique implementation2.

	 The flow of document is as follows.
In these Section we provide introduction of
vulnerabilities. Section II give detail of most harmful
attacks which cause by broken authentication and
session management vulnerabilities in asp.net
web application. In Section III, Implementation of
Suggested Algorithm, we present our propose

Table 1: OWASP TOP 10 Vulnerabilities

1	 Injection

2	 Broken Authentication and
	 Session Management
3	 Cross-Site Scripting-XSS
4	 Broken Access control
5	 Security Misconfiguration.
6	 Sensitive Data Exposure.
7	 Insufficient Attack Protection
8	 Cross-Site Request Forgery (CSRF)
9	 Using Components with
	 Known Vulnerabilities
10	 Under-protected APIs

algorithm and its steps. Section IV is the Result
part, which show our research analysis of findings.
Section V is the Conclusion, in these part of the
paper, it show the conclusion of whole paper.

Vulnerability Types
Brute Force Attack
	 Brute force attack is one type of trial and
error method used to receive information such as
a user password, Key or personal identification
number. In these attack, application programs used
to decode the encrypted data6.

Hijack Session
	 Session hijacking exploit legal session
using same token to get information, unauthorized
access or service of the system or website. It’s
nothing but hijacking a session. To hijack the
session from victim, attacker needs its cookies. To
implement it, create one form and submit to the
attacker site.

<script> abc.submit () </script>
<form name = ‘abc’ method = ‘post’ action = ‘addsite’
>
<input type = hidden value = ‘<script> + document.
cookie + </script>’>
</form>7.

Replay Attack
	 A replay attack is one type of network
attack in which data is fraudulently or maliciously
transmit. The attacker intercept that data and he
again transmits it. It’s also part of a masquerade
attack as stream cipher attack.

Session Fixation Attack
	 Session fixation attack try to exploit the
vulnerability in program or in the system which
allow user to set another user’s session identifier.
Session fixation attack mostly accepted from URL
means POST data or query string which rely on
session identifiers.

Session timeout
The Timeout property specifies the time-out life
assigned to the Session object for the application,
in minutes. If the user of application does not
regenerate or request a page within the time-out
period, the session ends6.

361Sharma & Sheth, Orient. J. Comp. Sci. & Technol., Vol. 10(2), 359-363 (2017)

Fig. 1: Average time to fix vulnerability

Suggested Algorithm
	 Fol lowing algor i thm descr ibe the
Vulnerabilities. We developed an algorithm for it
and we will apply in python script8. This algorithm9
consists of 11 steps where each steps of algorithm
consider a specific kind of vulnerabilities. Check for
Broken Authentication and session management.

These algorithms scan the following types of files
which are ‘aspx’, ‘aspx.cs and ‘web.config10. Step 1:
Detect the code if “Validate Request” attribute exits
in the website’s web configuration file and its value
is “False”, report, there’s vulnerability.

We can secure it by showing of full errors
information to the users that may be shown to
the hackers
Step 2: Detect the code if any “debug” attributes exit
in the website’s web configuration file and its value
is “True”, report that there is vulnerability.
Step 3: Detect in the code if “Textbox’s ID” value in
designing file of .aspx doesn’t validate using “Range
Validator” or “Regular Expression Validator”, report
there’s vulnerability.
Step 4: Detect the code, if “Session State” mode
is off in website configuration file, report there’s
vulnerability.
Step 5: Detect the code “Timeout” of the session
is define or not in session state of web.config.
If timeout of the session does not exists in the
configuration file, report there’s vulnerability.
Step 6: Detect the authentication code is exists

or not in the web.config. If exists then check that
it’s deny all anonymous user or not. If “deny users”
are not exists in web.config then report there’s
vulnerability
Step 7: Detect the code in .aspx, and .aspx.cs files
if “Request.QueryString and Request.cookies”
commands haven’t any kind of Anti XSS technique
otherwise report there’s vulnerabilities.
Step 8: check if after logout, cookie remove code
exists or not in web.config. If it’s not exists then
report there is vulnerability.
Step 9: Check at the logout function, session
destroy function exists or not, if it does not exist
then report there is vulnerability.
Step 10: Detect the code “autocomplete” attribute
in the form is on or off, if it is “on” then report there
is vulnerability5.
Step 11: Detect the code “cookie less” value exists in
session state of web.config file. If it does not exists,
report there’s vulnerability.

RESULT AND DISCUSSION

	 Using several online web application,
we started to examine the proposed algorithm.
However, we didn’t experience to gain any live web
application. So, we have to examine it offline. For
these motive we created web application and put
it into IIS server. We have also downloaded some
code from hereafter website:
https://www.codeproject.com
https://www.github.com

362 Sharma & Sheth, Orient. J. Comp. Sci. & Technol., Vol. 10(2), 359-363 (2017)

Sample of vulnerabilities scanning in asp.
net web application is shown in the following
screenshot:
	 We scan more than twenty website/web
application in the various tools but we don’t find
root cause of the attacks and broken authentication
and session management vulnerabilities. For that,
we purpose this algorithm which shows the exact
location in the source code which vulnerable and
causes the attack.

	 The Finding vulnerabilities in asp.net web
application is a very difficult process, in which code
is written by somebody else and doesn’t not have
any documentation which can explain the purpose
or meaning of small number code. In the .net
framework, programming code vary from the HTML
code. There are two different files. Programming
code is written in the compiled language like c#. All
over the world, c# is the most useable languages
with asp.net file. So, to construct our approaching
algorithm, we use that language. Therefore, to scan
processes, we have three types of files which are
aspx.cs, aspx, and configuration. The developed
python program scan these different files and forms
and show the founded vulnerability.

Prevention Technique
Identity confirmation

Fig. 2: Snapshot of scanning vulnerabilities

	 Broken authentication and session
management vulnerability highly avoided if we
change the session ID when users try to log in.
If every user require the authentication on every
request whenever he logged into the website,
the attacker also require the victim’s id and login
session. In this scenario, the victim want to do any
important things however he visits link which has
settled session id, he has to login in his account.
At that time, his session id will change and attacker
can’t do anything using that anonymous ID2.

HTTP cookie and session identifiers
	 By default, session identifier store in HTTP
cookie, which is moderate level security and it’s also
disregard the GET and POST value.

Deploy SSL / TLS session identifier
	 Many web development languages do
not provide the SSL or TLS session identifier
which is secure and robust built in functionality.
After enabling HTTPS security, system allow only
application which obtain the SSL/TLS session
identifier12.

CONCLUSION

Reduce the broken authentication and session
management vulnerability in any web application
or website needs two things. First, developer have
to aware of the install security at the beginning
of developing any program or application11., and
another things is that owner of web application must
inspect his/her website or web application before
publishing it. These paper represent the scanning
tool which design to discover leaks in source
code of web application which help to developer
to reduce the vulnerabilities in web application.
After the scanning, python script generate a report
which describe all uncover vulnerability and leaks
by showing name of infected files, location and
description. The paper has limitations that it’s only
work for asp.net and their supported language. In
future, we can make this type of algorithm for PHP
or java base language.

363 Sharma & Sheth, Orient. J. Comp. Sci. & Technol., Vol. 10(2), 359-363 (2017)

1.	 Xiaowei Li and Yuan Xue, “A survey on
Web Application Security” 2012 Institute of
Electrical and Electronics Engineers(IEEE)

2.	 OWASP Vulnerability Top ten, Retrieved on
February,2017 from https://www.owasp.org/
index.php/Category:Vulnerability

3.	 The Open Web Application Security Project
Book, b OWASP Foundation, https://www.
owasp.org/images/f/f8/OWASP-Top-10-
2013

4.	 “VULNERABILITY LIKELIHOOD BY CLASS”
, web security statistics report 2016[online]
Retrieved on February,2017 from https://info.
whitehatsec.com/rs/675-YBI-674/images/
WH-2016-Stats-Report-FINAL.pdf

5.	 Tony Hunt, “OWASP Top ten for .net
developers”, by plural sight publication.

6.	 Rajyalakshmi A.G, “broken authentication
and session management” Retrieved on
March 2017,from http://www.triadsquare.
com/broken-authentication-and-session-
management

7.	H uyam AL-Amro and Eyas El-Qawasmeh,
“Security Vulnerabilities and Leaks in ASP.NET

REFERENCES

Websites”, 2012 International Conference on
E-Learning and E-Technologies in Education
(ICEEE).

8.	 Paul Gries and Jennifer Campbell, Design
Algorithm, Practical programming 2nd edition-
A Introduction to computer science using
python 3, 2013 The Pragmatic Programmers,
LLC.

9.	 Paul Gries and Jennifer Campbell, Reading
and writing files, Practical programming
2nd edition- A Introduction to computer
science using python 3, 2013 The Pragmatic
Programmers, LLC.

10.	 ASP.NET Web Forms page code model,
h t tps : / /msdn .mic roso f t . com/en-us /
library/015103yb.aspx

11.	 B. Sullivan, “Top 10 security vulnerabilities
in .NET configuration files”, Retrieved on
February, 2017 from [Online] http://www.
devx.com/dotnet/Article/32493/1954.

12.	 SESSION Identifiers, Retrieved on March,
2017 from [Online] https://msdn,microsoft.
com/en-us/libary/ms178582.aspx.

