
ORIENTAL JOURNAL OF
COMPUTER SCIENCE & TECHNOLOGY

www.computerscijournal.org

ISSN: 0974-6471
June 2017,

Vol. 10, No. (2):
Pgs. 305-310

An International Open Free Access, Peer Reviewed Research Journal
Published By: Oriental Scientific Publishing Co., India.

Automatic Feedback Generation in Softwar-e
Performance Engineering: A Review

Javaid Iqbal and Syed Abrar Ul Haq

Department of Computer Science, University of Kashmir, Jammu and Kashmir, 190006, India.
*Corresponding author E-mail: iamjavaid@gmail.com

http://dx.doi.org/10.13005/ojcst/10.02.08

(Received: January 30, 2017; Accepted: March 30, 2017)

Abstract
	

	 Automation in generation of architectural feedback from performance indexes like probability
distributions, mean values and variances has been of interest to the researchers from last decade.
It is well established that due to the complexity in interpreting the performance indices obtained
from performance analysis of software architecture and short time to the market, an automated
approach is vital for acceptance of architecture based software performance engineering approach
by software industry. In last decade some work has beendone in this direction. Aim of this paper is
to explore the existing research in the field, which will be valuable for researchers looking forward
to contributing to this research.

Keywords: Software performance engineering; Feedback generation;
Antipattern approaches; Rule based approaches.

Introduction

	 Among non-functional attr ibutes of
software, performance is one of the key attribute.
It deals with the efficiency of system in dealing
with time constraints and resource allocation
under certain environmental conditions. Response
time, throughput and utilization are some key
performance indices. Most of the problems that
projects report after their release are not crashes or
incorrect responses, but rather system performance
degradation or problems handling required system
throughput22. Performance problems sometimes are
so severe that they require considerable design

changes.One of the major performance problems
that occurred in recent times was the roll out of
healthcare.gov website. Healthcare.gov got crashed
during its launch on October 1st, 2013 and remained
inactive for several weeks. It is reported that 9.47
million users attempted to register during the first
week of the launch, but only 271,000 succeeded.
Initial cost of healthcare.gov was estimated to be
$600 million and reports suggest that more than $2
billion were spent on tuning.

	 Fixing these problems is costly and
causes schedule delays, lost productivity, cost
overruns, lost revenues, missed market windows

306 Iqbal & Haq, Orient. J. Comp. Sci. & Technol., Vol. 10(2), 305-310 (2017)

and damaged customer relations. To avoid this it is
of great benefit to consider software performance
issues from the beginning of software development
life cycle. Architectural decisions made early in
software development process have utmost impact
on software performance. While good architecture
cannot guarantee attainment of quality goals poor
architecture can prevent their achievement23.
Selection of optimal architecture for software
system can not only produce the better performing
software but can also save efforts and cost involved
in tuning a software system at later stages. Tuning
can improve performance, but tuning changes may
require considerable implementation efforts that can
cause delay in the timely delivery.

	 Software Performance Engineering (SPE)
can be used to develop software system that meets
its performance requirements. It is a proactive
approach that uses quantitative techniques to
predict the performance of software early in design
phase to identify feasible options and eliminate poor
ones before implementation begins8.SPE can be
divided into 3 phases, modeling phase, analysis
phase and refactoring phase. First two phases
comprises the forward path of SPE while the third
phase is feedback generation or backward path.
Approaches available for forward path have been
surveyed in5,6. Quite well-assessed techniques are
available to automatically generate performance
models and solve them. Some of the tools like
SHARPE, SPE’”ED, GreatSPN, TimeNET and
Two Towers are available to support software
performance model solution. In this paper we
focus on the third phase i.e. refactoring phase.
Our aim is to explore the existing research in the
field of automated generation of feedback from
performance indices generated from performance
analysis.

Literature review
	 In4 Baldassari et al. introduces a PROTOB
which has simulation capability for performance
assessment and integrates the Petri net design
notation into a CASE tool. In15,16 Kazman et al.,
proposed a scenario-based approach for the analysis
of software architectures for various software quality
attributes like modifiability, availability, security and
performance. But the first SPE based approach

for performance analysis was proposed by Smith
and Williams in23 in which software architecture is
specified as class diagrams, deployment diagrams
and sequence diagrams enriched with ITU MSC
(Message sequence Chart). Software architectures
are evaluated on the basis software execution model
as well as system execution model using SPE’”ED
tool. PASA (Performance Analysis of Software
Architecture)24 is proposed by C. Smith et al in which
approach proposed in23 is embedded. PASA is a
scenario based approach which uses anti patterns
to identify the performance problems in critical
use cases and evaluates various architectural
alternatives to find efficient one. PASA is solely
manual and requires interaction between software
developers and performance experts to solve
performance problems. Framework for automated
generation of feedback was first proposed by
Cortellessa et al., in6. 2 x 2 interpretation matrix and
performance antipatterns are used for performance
feedback generation in their approach. They used
hierarchical approach for investigation of software
performance. Flat requirements and services
oriented requirements are considered for dividing
a system into subsystems.Performance modeling
has been done using LQN. Main drawback of this
approach is that it uses restricted set of antipatterns
and informal interpretation matrix. Performance
antipatterns are also detected manually in the
performance model. In7 an automated approach to
detect performance antipatterns is proposed. APML
(antipattern modeling language) is introduced and
is used to specify performance antipatterns to
automatically detect them. In9 Cortellessa et al. has
proposed an approach to find antipatterns affecting
performance requirements from antipatterns
existing in the software model identified using7.
Guiltiness factor for each antipattern is calculated
and ranked antipattern list is generated. This
approach is intended to be integrated with SPE
approach to effectively detect and remove software
antipatterns. In8 java rule-engine application is
used to detect software performance antipatterns
from the software model represented in XML.
Performance antipatterns are represented in XML.
Static, dynamic and deployment view of software
system are taken into consideration while detecting
performance antipatterns. This work has been
extended in11 where antipatterns are formalized

307Iqbal & Haq, Orient. J. Comp. Sci. & Technol., Vol. 10(2), 305-310 (2017)

using system independent rules and a case study
is conducted. In20 approach to automatically detect
and solve performance antipattern from the software
system modeled in PCM (Palladio Component
Model) them is proposed. Paper defines a set of
rules and actions to overcome the performance
flaws. Set of thresholds are required for the
formalization proposed in11 .These formalizations
may hide bad design as thresholds are not properly
set. In1 approach based on RBMS(Role-Based
Modeling Language) has been used for refactoring
of software architecture. Various Source Role
Model (SRM) - Target Role Model (TRM) pairs
have been defined and used to guide refactoring
process. Challenges like context information and
applicability of refactoring actions have been taken
into consideration for refactoring process. In21 round
trip approach merging bottleneck analysis and
performance antipatterns has been proposed. In
this approach bottleneck analysis is done first to
derive a system configuration where imbalance in
resource allocation doesn’t exist. If the performance
problem still persists, the performance analysis
based on performance antipatterns is conducted.
By doing this solution space of antipattern based
performance analysis is reduced by pruning the
design alternative graph of antipatterns that involve
only bottlenecks.A prototype called performance
booster has been described in27 in which several
rules have been incorporated for diagnosis of
performance. In this approach software architectural
model, represented by annotated UML is translated
into performance model (Layered queuing networks)
and then analyzed. Set of rules have been defined to
automate performance analysis and explore design
changes. Improved software performance model is
obtained from these rules and then transformed to
software design model manually.

	 In12 an evolutionary algorithm, EA4PO is
proposed to find optimal solution for performance
improvement. EA4PO is based on RPOM
mathematical model and RSEF framework. RPOM
is used to describe the mathematical relationship
between usage of rules and optimal solution
in performance improvement space. Execution
of rule sequences is supported by the RSEF
framework. EA4PO can help rule based performance
optimization techniques to improve the quality
of optimization by searching the larger solution

space.In14 an approach for transforming software
architectural model to software performance model
and software performance model back to software
performance model has been introduced. In this
paper Janus Transformation Language (JTL) is used
which is a declarative model transform language
and is tailored specifically to support bi-directionality
of model transformation and change propagation. In
this paper source meta-model is defined as a subset
of UML 2.0 plus MARTE profile and the target meta-
model is in Generalized Performance Interchange
Format (GPMIF) representing Queuing network
models. Both source and target meta-models have
been encoded in Ecore format in order to be used
with JTL transformation engine.In3 a framework for
supporting interpretation of software performance
analysis results and generation of feedback in terms
of software model refactoring based on software
performance antipatterns has been introduced. In
this framework a set of modules have been used
which work in synergy within eclipse modeling
framework (EMF).

Classification and Comparison
	 Various automated approaches have
been proposed to tackle performance problems in
the software system in early phases of software
development. In last decade, focus has been
given to automating generation of feedback and
suggesting refactoring actions. These approaches
can be classified on the basis of approaches used
by then to search and detect performance problems
and on the basis of model used for carrying
refactoring action.

Classification on the basis of approach used to
detect performance problems
	 On the basis of approach used to search
and detect for performance problems, automated
approaches for feedback generation can broadly
classified into two categories. (1) Antipattern based
approach and (2) Rule based approach.

Antipattern based approach
	 In antipattern based approach performance
antipatterns are identified and removed from
software architectural model in order to achieve
performance goals. Performance antipatterns
are bad practices that can negatively affect the
performance of software system. Various domain

308 Iqbal & Haq, Orient. J. Comp. Sci. & Technol., Vol. 10(2), 305-310 (2017)

independent25 and domain specific antipatterns13,7
have been identified by researchers in recent
years. This approach was first used in24 for software
performance improvement. In1,7,8,9,11,20,21 various
approaches have been proposed to automatically
detect software performance antipatterns in
software architectural model and remove them.

Rule based approach
	 In rule based approach various rules are
defined to detect and solve performance problems
that exist in software architecture. Rules are aimed
at detecting interaction between various resources
(hardware or software) and suggest refactoring
action required to solve the detected performance
problem. This approach has been used in12,27.

Classification on the basis of model used to
carry refactoring actions
	 We can also classify available approaches
for automated feedback generation on the basis

of model used to carry refactoring actions in (i)
Software architectural model based refactoring
approach and (ii)software performance model
based refactoring approach.

Software architectural model based refactoring
approach
	 In this approach, alternative software
architectural model with improved performance
is searched to tackle with the performance
issues that emerged from performance analysis.
In this approach, problematic areas in software
architectural model are identified and refactoring
actions are suggested for it. Antipattern based
approaches use this approach. Fig 1 shows the
steps involved in this approach.

Software performance model based refactoring
approach
	 In this approach, refactoring actions
are done on software performance model to

Fig. 1: Software architectural model based refactoring approach

Software Architectural Model
(annotated)

Performance Model

Performance Results

Result Interpretation/Feedback
Generation

Fig 1: Software architectural model based refactoring approach

Fig. 2: Software performance model based refactoring approach

Architectural Model

Initial Performance Model

Performance Indices

Performance Model

Performance Model

Performance Indices

Performance Indices New Architectural Model

Fig 2: Software performance model based refactoring approach

309Iqbal & Haq, Orient. J. Comp. Sci. & Technol., Vol. 10(2), 305-310 (2017)

improve software performance. Once the software
performance model with improved performance in
achieved, performance model is then transformed
into improved software architectural model. Rule
based approaches use this approach. Fig 2 shows
the steps involved in this approach.

Conclusion

	 In this paper, we have reviewed the
research work done for automated feedback
generation in software performance engineering.
We have classified the approaches available for
feedback generation on the basis of approaches
used to find performance issues and the model used
to take refactoring actions. Lack of automation in
the interpretation of performance indices obtained
from performance analysis is the main reason that
software performance engineering is not being
adopted by software industry overwhelmingly. In
this scenario this paper will help researchers who
are looking forward to contribute to this field.

	 Several problems exist in automation
of feedback generation and need to be studied
and solved. None of the approaches discussed
in pervious section guarantee that the suggested
refactoring action will improve the software

performance and thus performance analysis
is repeated after the refactoring is carried out.
Process of refactoring is carried out till the required
performance is attained or no more refactoring
action could be suggested. In antipattern based
approach, which use software architectural
model based refactoring approach moving back
and forth to the architectural model to search for
better performing alternative may bring in high
complexity in the whole process due to large
number of possible. This problem has been tackled
in software performance model based approach.
But to transform software performance model to the
software architectural model is complex task and
more research has to be done to fully automate this
process.

	Q uality attributes of software system are
interdependent. While suggesting refactoring actions
for performance improvement, other software
quality attributes like availability, maintainability,
testability, security, reliability etc are also to be taken
into consideration and a tradeoff analysis between
these attributes need to be performed. It is worth to
conduct a research to design a framework where
software performance is analyzed in consideration
with other quality attributes.

References

1.	 Arcelli, D; Cortellessa, V;Trubiani, C. (2012):
Antipattern-based model refactoring for
software performance improvement. In
International Conference on the Quality
of Software Architectures (QoSA), pages
33–42.

2.	 Arcelli, D; Cortellessa, V (2013): Software
model refactoring based on performance
analysis: better working on software
or performance side? arXiv preprint
arXiv:1302.5171.

3.	 Arcelli, D;Cortellessa, V. (2015): “Assisting
Software Designers to Identify and Solve
Performance Problems,” in First International
Workshop on the Future of Software
Architecture Design Assistants (FoSADA),

WICSA and CompArch 2015, Montréal,
Canada, CA.

4.	B aldassari, M., et al (1989): “PROTOB: A
hierarchical object-oriented CASE tool for
distributed systems,” in Proc. Europ. Software
Eng. Conf, 1989, Coventry, England.

5.	B alsamo, S., et al (2004): M. Model-
Based Performance Prediction in Software
Development: A Survey. IEEE Trans. Software
Eng. 30, 5, 295–310.

6.	 Cortellessa, V.; Frittella, L. A (2007):
Framework for Automated Generation of
Architectural Feedback from Software
Performance Analysis. In Proceedings of the
Formal Methods and Stochastic Models for
Performance Evaluation, Fourth European

310 Iqbal & Haq, Orient. J. Comp. Sci. & Technol., Vol. 10(2), 305-310 (2017)

Performance Engineering Workshop, EPEW
2007, pp. 171–185.

7.	 Cortellessa, V., et al (2009): Approaching
the model-driven generation of feedback
to remove software performance flaws.
In Software Engineering and Advanced
Applications, 2009. SEAA’09. 35th Euromicro
Conference on, pages 162–169. IEEE.

8.	 Cortellessa, V.;Marco, A. Di;Trubiani, C.
(2010a): Performance Antipatterns as
Logical Predicates. In IEEE International
Conference on Engineering of Complex
Computer Systems, pp. 146–156.

9.	 Cortellessa, V., et al (2010b): A Process
to Effectively Identify “Guilty” Performance
Antipatterns. In Fundamental Approaches
to Software Engineering, pp 368–382.

10.	 Cortellessa, V.; Di Marco, A.; Inverardi, P.
(2011): Model-Based Software Performance
Analysis. Springer, Heidelberg

11.	 Cortellessa, V; Marco, A. Di;Trubiani, C.
(2012): An approach for modeling and
detecting software performance antipatterns
based on first-order logics. Journal of
Software and Systems Modeling. DOI:
10.1007/s10270-012-0246-z.

12.	 Du, X, et at (2015): “An Evolutionary
Algorithm for Performance Optimization
at Software Architecture Level”, In IEEE
Congress on Evolutionary Computation
(CEC):

13.	 Dudney, B., et al (2003): J2EE antipatterns.
14.	 Eramo, R, et at (2012): “Performance-driven

architectural refactoring through bidirectional
model transformations,” in QoSA, pp.
55–60.

15.	 Kazman, R., et al (1996): Scenario-based
analysis of software architecture. IEEE
Software 13 (6), 47–56.

16.	 Kazman, R., et al (1998): The architecture
tradeoff analysis method. In:Proceedings
of the 4th International Conference on
Engineering of Complex Computer Systems.
IEEE Computer Society Press, Montery, CA,
pp. 68–78.

17.	 Koziolek, H. (2010): “Performance Evaluation

of Component-based Software Systems: A
Survey,” Perform. Eval., 67, (8), pp. 634–
658.

18.	 Smith, C.U.(2015): “Software Performance
Engineering Then and Now: A Position
Paper”, Proceedings of the 2015 Workshop
on Challenges in Performance Methods for
Software Development.

19.	 Tate, B., et al (2003): EJB.
20.	 Trubiani, C;Koziolek, A. (2011): Detection

and solution of software performance
antipatterns in palladio architectural models.
In ICPE, pages 19-30.

21.	 Trubiani, C., et al (2014): “Exploring
synergies between bottleneck analysis and
performance antipatterns,” in ICPE, 2014,
pp. 75–86.

22.	 Vokolos, F. I ; Weyuker E. J.(1998):
“Performance Testing of Software Systems,”
Proceedings, F i rs t ACM SIGSOFT
International Workshop on Software and
Performance, Santa Fe, NM ,pp. 80–87

23.	 Williams, L. G; Smith C. U (1998): Performance
evaluation of software architectures,
Proceedings of the 1st international
workshop on Software and performance,
p.164-177, Santa Fe, New Mexico, USA

24.	 Williams, L. G; Smith, C. U. (2002): PASA:
An Architectural Approach to Fixing Software
Performance Problems, Proc. of CMG
international conference.

25.	 Williams, L. G; Smith, C. U. (2003): More new
software performance antipatterns: Even
more ways to shoot yourself in the foot. In:
Computer measurement group conference.

26.	 Woodside, Murray; Franks , Greg; Petriu,
Dorina (2007): The future of software
performance engineering, in: Future of
Software Engineering, FOSE’07, IEEE
Computer Society, Los Alamitos, CA, USA,
pp. 171–187

27.	 Xu, J (2008): Rule-based automatic software
performance diagnosis and improvement, in:
Proc 7th ACM Int. Workshop on Software and
Performance, Princeton, NJ, pp. 1–12.

