
ORIENTAL JOURNAL OF
COMPUTER SCIENCE & TECHNOLOGY

www.computerscijournal.org

ISSN: 0974-6471
September 2013,

Vol. 6, No. (3):
Pgs. 363-369

An International Open Free Access, Peer Reviewed Research Journal
Published By: Oriental Scientific Publishing Co., India.

INTRODUCTION

Network simulator (NS-2) is a good tool
for the purpose of network simulation. NS-2 can
simulate many types of network like LAN and
WPAN depending on script written by the user.
NS-2 depends on two programming languages
C++ and OTCL. C++ used to make the execution
very faster while OTCL used to create network
environment and its important occur in
modification of the network environment in quickly
manner1. The traffic between the source and
destination nodes can be is generated by using
cbrgen.tcl file. This file can generate only CBR
with UDP and FTP with Tahoe TCP2. UDP support

Adding TCP-Variants to NS-2

AHMED JAWAD KADHIM

Ministry of Education, General Directorate for Education Qadisiyah, Iraq.

(Received: August 21, 2013; Accepted: August 30, 2013)

ABSTRACT

The network simulator (NS-2) is very important to simulate the network types such as
mobile ad-hoc network efficiently and easily by providing the environment of this network exactly.
This simulator helps the researcher in the last years to introduce Their researches without need
to the expensive requirements to build the network in real time. This simulator uses file (called
cbegen.tcl) to generate the traffic between nodes of the network at random time according to
uniform distribution. The original cbrgen.tcl file provides two types of traffics that are CBR with UDP
and FTP with TCP. The purpose of this paper is to add the one-way TCP and two-way TCP variants
to NS-2. Also, this paper made these variants operate with many types of sink such as TCPSink,
TCPSink/DelAck, TCPSink/Sack1, and TCPSink/Sack1/DelAck. This addition make it usable for
anyone that wants to study the behaviour of these variants and its effects on the network.

Key word: NS-2, one-way TCP, two-way TCP MANET.

an unreliable connectionless between two hosts
in the network3. TCP is responsible for a reliable
and connection-oriented communication because
the connection is established prior to transmitting
data .In TCP there is a guarantee that the data is
being transmitted to the destination4. In TCP results
long delay because there are many requests for
the lost packets5. There are many types of TCP that
are one-way and two-way as a source. One-way
TCP are Tahoe, Reno, Newreno, Sack1, Fack,
Vegas, and Linux. Two-way TCP is FullTcp. As a
sink also there are many types that are TCPSink,
TCPSink/DelAck, TCPSink/Sack1, and TCPSink/
Sack1/DelAck6.

364 KARFORMA et al., Orient. J. Comp. Sci. & Technol., Vol. 6(3), 363-369 (2013)

Related Work
Saad Talib Hasson and et al. at 2012 add

exponential on/off, Pareto on/off, and Telnet traffic
generators to the cbrgen.tcl file in NS-2, as well as
made the time of the traffic generator distributed
between 0 and the simulation time instead of 0
and 180. They concluded that can be generate
many traffics in good manner through the
simulation time and prevent the traffics that can be
schedule out the range of the simulation period7.

This paper also helps in modifying the
cbrgen.tcl file but this addition associated with other
types of the traffic generators (one-way and two-
way TCP) that can be work with different types of
sink like TCPSink, TCPSink/DelAck, TCPSink/
Sack1, and TCPSink/Sack1/DelAck.

Modified File
This section shows the code of the modified file
that can be used in NS-2 easily to build the traffic
generators between the source and destination
nodes in the mobile ad-hoc networks.
To make NS-2 accept this modification, the user
must be enter to the following directory ns-allinone-
2.34/ns-2.34/indep-utils/cmu-scen-gen, and then
open cbrgen.tcl file and delete original code and
put in it the following code.

set opt(nn) 0 ; #
Number of Nodes
set opt(seed) 0.0
set opt(mc) 0
set opt(pktsize) 512
set opt(traffic) “”
set opt(rate) 0
set opt(interval) 0.0 ;# inverse of
rate
set opt(type) “”
set opt(t) 0
set opt(destination) “”
#
==

proc usage {} {
 global argv0
puts “\nusage: $argv0 \[-type UDP|TCP|TCP/
Vegas|TCP/Linux|TCP/Fack|TCP/Newreno|TCP/
Reno|TCP/Sack1|TCP/FullTcp\] \[-traffic
exp|pareto|cbr|FTP|Telnet\] \[-destination

T C P S i n k | T C P S i n k / D e l A c k | T C P S i n k /
Sack1|TCPSink/Sack1/DelAck\] \[-nn nodes\] \[-
seed seed\] \[-mc connections\] \[-rate rate\] \[-t t\]\n”
 }
#===

proc getopt {argc argv} {
global opt
lappend optlist type traffic destination nn

seed mc rate t

for {set i 0} {$i < $argc} {incr i} {
set arg [lindex $argv $i]
if {[string range $arg 0 0] != “-”}

continue

set name [string range $arg 1
end]

set opt($name) [lindex $argv
[expr $i+1]]

}
}
#===

if {$argc !=16} {
 puts “error”
 usage
exit 1
}

getopt $argc $argv

#
==
proc create-udp-all-connection { src dst } {

 global rng cbr_cnt opt opt\(type\) traffic nn t
set stime [$rng uniform 0.0 $opt(t)]

puts “#\n# $src connecting to $dst at time
$stime\n#”

puts “set udp_($cbr_cnt) \[new Agent/
UDP\]”

puts “\$ns_ attach-agent \$node_($src)
\$udp_($cbr_cnt)”

puts “set null_($cbr_cnt) \[new Agent/
Null\]”

puts “\$ns_ attach-agent \$node_($dst)
\$null_($cbr_cnt)”

365KARFORMA et al., Orient. J. Comp. Sci. & Technol., Vol. 6(3), 363-369 (2013)

if { $opt(traffic) == “cbr” } {
puts “set cbr_($cbr_cnt) \[new Application/

Traffic/CBR\]”
puts “\$cbr_($cbr_cnt) set packetSize_

$opt(pktsize)”
puts “\$cbr_($cbr_cnt) set interval_

$opt(interval)”
puts “\$cbr_($cbr_cnt) set random_ 1”
puts “\$cbr_($cbr_cnt) set maxpkts_

10000”
 puts “\$cbr_($cbr_cnt) attach-agent
\$udp_($cbr_cnt)”

puts “\$ns_ connect \$udp_($cbr_cnt)
\$null_($cbr_cnt)”

puts “\$ns_ at $stime \”\$cbr_($cbr_cnt)
start\””

} elseif { $opt(traffic) == “exp” } {
puts “set exp_($cbr_cnt) \[new

Application/Traffic/Exponential\]”
puts “\$exp_($cbr_cnt) set packetSize_

$opt(pktsize)”
puts “\$exp_($cbr_cnt) set rate_

$opt(rate)\kb”
puts “\$exp_($cbr_cnt) set burst_time_

0.5”
puts “\$exp_($cbr_cnt) set idle_time_ 0.5”
puts “\$exp_($cbr_cnt) attach-agent

\$udp_($cbr_cnt)”
puts “\$ns_ connect \$udp_($cbr_cnt)

\$null_($cbr_cnt)”
puts “\$ns_ at $stime \”\$exp_($cbr_cnt)

start\””

} else {
puts “set pareto_($cbr_cnt) \[new

Application/Traffic/Pareto\]”
puts “\$pareto_($cbr_cnt) set

packetSize_ $opt(pktsize)”
 puts “\$pareto_($cbr_cnt) set rate_
$opt(rate)\kb”

puts “\$pareto_($cbr_cnt) set burst_time_
0.5”

puts “\$pareto_($cbr_cnt) set idle_time_
0.5”

puts “\$pareto_($cbr_cnt) set shape_ 1.5”
puts “\$pareto_($cbr_cnt) attach-agent

\$udp_($cbr_cnt)”
puts “\$ns_ connect \$udp_($cbr_cnt)

\$null_($cbr_cnt)”

puts “\$ns_ at $stime
\”\$pareto_($cbr_cnt) start\””

}
incr cbr_cnt

}

#==
proc create-tcp-all-connection { src dst } {

global rng cbr_cnt opt opt\(type\) traffic
destination nn t

set stime [$rng uniform 0.0 $opt(t)]

 puts “#\n# $src connecting to $dst at time
$stime\n#”

puts “set tcp_($cbr_cnt) \[\$ns_ create-
connection \
 $opt(type) \$node_($src) $opt(destination)
\$node_($dst) 0\]”;

puts “\$tcp_($cbr_cnt) set window_ 32”
puts “\$tcp_($cbr_cnt) set packetSize_

$opt(pktsize)”
puts “set ftp_($cbr_cnt) \[\$tcp_($cbr_cnt)

attach-source $opt(traffic)\]”
puts “\$ns_ at $stime \”\$ftp_($cbr_cnt)

start\””
incr cbr_cnt

}

#==

if { $opt(nn) == 0 || $opt(seed) == 0.0 || $opt(mc) ==
0 || $opt(rate) == 0 || $opt(traffic) == “” ||
$opt(destination)== “” || $opt(type) == “” } {

usage
exit

 }
 set opt(interval) [expr 1 / $opt(rate)]
 if { $opt(interval) <= 0.0 } {

puts “\ninvalid sending rate $opt(rate)\n”
exit

 }

puts “#\n# nodes: $opt(nn), max conn: $opt(mc),
send rate: $opt(interval), seed: $opt(seed)\n#”

set rng [new RNG]
$rng seed $opt(seed)

366 KARFORMA et al., Orient. J. Comp. Sci. & Technol., Vol. 6(3), 363-369 (2013)

Fig. 1: Number of the dropped packets for each TCP type

Fig. 2: The throughput for each TCP type

Fig. 3: Average jitter for each TCP type

Fig. 4: Normalize routing load for each TCP type

367KARFORMA et al., Orient. J. Comp. Sci. & Technol., Vol. 6(3), 363-369 (2013)

set u [new RandomVariable/Uniform]
$u set min_ 0
$u set max_ $opt(t)
$u use-rng $rng

set cbr_cnt 0
set src_cnt 0

for {set i 0} {$i < $opt(nn) } {incr i} {

set x [$u value]
 if {$x < 50} {continue;}

incr src_cnt

set dst [expr ($i+1) % [expr $opt(nn) + 1]]

if { $opt(type) == “UDP” } {

create-udp-all-connection $i $dst

} else {
create-tcp-all-connection $i $dst

}

if { $cbr_cnt == $opt(mc) } {
break

}

 if {$x < 75} {continue;}

set dst [expr ($i+2) % [expr $opt(nn) + 1]]

 if { $opt(type) == “UDP” } {

create-udp-all-connection $i
$dst

} else {

create-tcp-all-connection $i $dst

}

if { $cbr_cnt == $opt(mc) } {
break

}

}
puts “#\n#Total sources/connections: $src_cnt/
$cbr_cnt\n#”

#==

After putting the above code in the
cbrgen.tcl file, the user must be writing the following
instruction to generate the traffics that are one-
way and two-way TCP variants with many types of
sink easily.

ns cbrgen.tcl –type agent_type –traffic
traffic_type -destination destination_type –nn
number -seed number -mc number -rate number
–time simulation_time>file_name

Where:
agent_type : either UDP, TCP, TCP/Vegas, TCP/
Linux, TCP/Fack, TCP/Newreno, TCP/Reno, TCP/
Sack1, or
 TCP/FullTcp
traffic_type : either exp, pareto, cbr, FTP, or Telnet
destination_type : either TCPSink, TCPSink/
DelAck, TCPSink/Sack1, or TCPSink/Sack1/
DelAck

simulation _time : is the same time that
used in the scenario file and in the simulation
environment.

Note
The above instruction is sensitive for the

case of the letter (the agent type, traffic type and
destination type must be written as found above).

Simulation Environment
In order to improve the activity of the

modified file, the simulation had performed
depending on the NS-2 and the mobile ad-hoc
network environment that shown in table1.

Simulation Results
Figure1 represents the number of the

dropped packets for each type of the TCP, figure 2
illustrates the throughput of mobile ad-hoc network
with each type of the TCP, figure 3 shows the
average jitter for every type of the TCP, and the
normalize routing load shown in figure 4.

368 KARFORMA et al., Orient. J. Comp. Sci. & Technol., Vol. 6(3), 363-369 (2013)

CONCLUSION

The old traffic generator file was restricted
for little types of traffic that studied in many
researches before this paper. The modified file can
generate many new types of traffic between source

and destination nodes efficiently to be used in the
simulation of the network that depend on the NS-
2. This code can be used by any researcher that
depends on the NS-2 to study the behaviour of
these types of TCP as sender with many types as
receiver.

Table 1: Mobile ad-hoc network environment

The parameter The value

Operating system Debian Linux
Network simulator NS-2.34
Number of nodes 10 nodes
Simulation time 100 second
Routing protocol DSDV
Simulation area 700m * 700m
Pause time 5s
Pause time distribution Uniform
Speed 6m/s
Speed distribution Uniform
Agent type (source type) TCP, TCP/Vegas, TCP/Linux,

TCP/Fack, TCP/Newreno, TCP/Reno,
TCP/Sack1, and FullTcp

TCP sink type TCPSink
Traffic type FTP
Movement model Random way point model
Sending rate 3 packets/second
Size of packet 512 bytes/packets
Max connection 4

REFERENCES

1. Jyotsna Rathee and A. K. Verma,
“Simulation, Analysis and Comparison of
DSDV Protocol in MANETS”, MSc. thesis,
Computer Science and Engineering
Department, Thapar University (2009).

2. FJ Arbona Bernat and P.F.A. Van Mieghem,
“Simulation of Ant Routing Protocol for Ad-
hoc networks in NS-2”, MSc. thesis, Delft
university of technology, Faculty of Electrical
Engineering, Mathematics and Computer
Science Network Architectures and
Services Group (2006).

3. Teerawat Issariyakul and Ekram Hossain,
“Introduction to Network Simulator NS2”,

springer, ISBN: 978-0-387-71759-3 (2009).
4. P.Periyasamy and E.Karthikeyan,

“Performance evaluation of aomdv protocol
based on various scenario and traffic
patterns”, International Journal of Computer
Science, Engineering and Applications
(IJCSEA) 16): (2011).

5. YAMSANI RAVIKUMAR and SARATH
KUMAR CHITTAMURU, “A Case Study on
MANET Routing Protocols Performance
over TCP and HTTP”, MSc. thesis, School
of Engineering blekinge Institute of
Technology, Sweden (2010).

6. Kevin Fall and Kannan Varadhan, “The ns

369KARFORMA et al., Orient. J. Comp. Sci. & Technol., Vol. 6(3), 363-369 (2013)

Manual (formerly ns Notes and
Documentation)”, 2010.

7. Saad Talib Hasson, Ahmed Jawad Kadhim,
Zainab Saad Talib, “Enhancing the NS-2

Traffic Generator for the MANETs”, IOSR
Journal of Computer Engineering
(IOSRJCE), ISSN: 2278-0661 Volume 4,
Issue 2, PP 12-16, 2012.

