
ORIENTAL JOURNAL OF
COMPUTER SCIENCE & TECHNOLOGY

www.computerscijournal.org

ISSN: 0974-6471
September 2013,

Vol. 6, No. (3):
Pgs. 321-331

An International Open Free Access, Peer Reviewed Research Journal
Published By: Oriental Scientific Publishing Co., India.

INTRODUCTION

The tasks of data mining are expensive
treatments, and the available data volumes
increase with storage possibilities, imposing
recourse to parallelism, from where the birth of
Distributed Data Mining (DDM).

DDM is a traditional data mining process
which consists of extracting a new knowledge from
partitioned data sources, distributed on different
sites, each site applies a Data mining algorithm
on local data. The results are then combined with
a minimum of interaction between data sites.  The
majority of DDM algorithms are designated on the
potential parallelism which they can apply on the
available distributed data. Generally, the same
algorithm works on each site of distributed data at
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ABSTRACT

As a result of the physical storage expansion and backup equipment and the increasing
need to store more data, the sequential searching algorithms of association rules have been found
ineffective. Thus the introduction of new parallel versions has become a necessity. We propose in
this paper, a parallel version of a sequential algorithm Partition. This is fundamentally different from
other sequential algorithms, as it scans the database only twice to generate all significant association
rules. Consequently, the parallel approach does not require much communication between sites.
The proposed approach was implemented for an experimental study. The results obtained show
a large gain in execution time compared to the sequential version.
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the same time, producing a local model for each
site. Afterward, all local models are combined to
produce the final model. Primarily, the success of
DDM algorithms resides in a minimal transfer of
data. Among the algorithms of distributed data
mining are: distributed classification1-7distributed
clustering8-12 and distributed association rules.

Many parallel and distributed data mining
algorithms were proposed in order to extract
association rules. We distinguish two great families.
The first is data Parallelism, such as CD (Count
Distribution), FDM (Fast Distributed Mining), DMA
(Distributed Mining of Association Rules) and
ODAM (Optimized Distributed Association Mining).
The second is Task Parallelisms, we can quote,
DD (Data Distribution), IDD (Intelligent Data
Distribution) and HPA (Hash Partioned Apriori).
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There are other algorithms which cannot be
classified in these two families, like HD (Hybrid
Distribution), CAD (Candidate Distribution) and
ECLAt.

In this paper, we present a new parallel
algorithm which differs from other algorithms by
proposing the parallelization of a sequential
algorithm called Partition13. This latter requires two
scans of database, which will make it possible to
reduce the communications number thus the
addition of a synchronization phase between sites
in the parallel version of this algorithm.  We chose
a centralized architecture to minimize the
communication cost, where each site treats
independently its database during the two scans
and sends results to the coordinator which will be
in charge of cumulating the results.

The paper is organized as follows: the
next section is an introduction to the extraction of
associative rules. In section 3, we study the
performance of best known parallel algorithms for
extraction of association rules in distributed
environments. Thereafter, we present the proposed
parallel algorithm in section 4. The experiments
and comparative results of the parallel algorithm
are shown in section 5 with comments. We will
conclude with future works in section 6.

Association rules extraction
The extraction techniques of association

rules are not supervised learning methods; they
allow the discovering from a set of transactions, a
set of rules which expresses a possibility of
association between different attributes.  Taking
the example of supermarket where the articles
bought by each consumer are recorded in the
database as transaction.

From this example, we can find
associative rules of the form “90% of clients who
buy chocolate and milk tend to buy cheese”.
Chocolate and milk constitute the antecedent of
this rule, cheese is the consequence and 90% is
confidence. The associative rules were used
successfully in many fields like the planning aid,
the diagnosis aid in medical research, the
improvement of telecommunication processes, the
organization and access to Internet sites, the

analysis of images and spatial data, statistical and
geographical applications, etc.

Definitions
Consider I = {I1, I2…,Im} a set of m items

and D a set of transactions constituted by the items
(II, IJ , IK  of I).

An association rule is an implication of
the form X=>Y where X and Y are included in I and
X )” Y = Ø. X is called condition or antecedent and
Y consequent. Two measures are defined for an
associative rule: the support and confidence. The
support is the report of a transactions number for
which condition and conclusion appear at the same
time on the total number of transactions and
confidence is the report of transactions number for
which a condition and a conclusion appear at same
time on the transactions number for which at least
one condition appears.

Association rules research
The association rules search consists of

finding the rules whose support and confidence
are respectively superior to the thresholds
minimum of support MinSup and confidence
MinConf fixed by the user. The discovery of
association rules is done in two phases:

Research of the frequent itemsets
It consists of scanning iteratively the

transactions set. For each iteration, a set of
candidate itemsets is created. The supports of
these itemsets are calculated and the non-frequent
itemsets are removed (itemset which have a
support inferior to MinSup). This phase is
expensive in processing time because the number
of frequent itemsets depends exponentially on the
items number manipulated for the N items. Thus,
we have 2N  potentially frequent itemsets.

Research for the interesting rules in the itemstes
This phase use the frequent itemsets set

to deduce the searched rules.  Thus, if ABCD and
AB are frequent itemsets, then we can generate a
rule AB=>CD. To know if this rule is to be retained
or rejected, we calculate the confidence of
AB=>CD by the formula: conf = sup (ABCD)/sup
(AB). If conf e” minconf, then the rule is retained.
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Sequential algorithms
The extraction algorithms of frequent

itemsets proceed in an iterative way. During the
Kth  iteration, we search the frequent K-itemsets,
i.e. the itemsets of length K Which are frequent, in
the following iteration, it (K+1)th, we will search
the frequent (K+1)-itemsets and so on.

The first algorithms for extracting the
frequent itemsets are AIS [14], Apriori [15] and
SETM [16]. They were proposed in 1993. Other
algorithms to reduce the time for extracting frequent
itemsets then appeared, and several optimizations
and data structures to improve the Apriori algorithm
efficiency, include:
- AprioriTid by Agrawal and Srikant in 1994.

[15]
- AprioriHybrid by Agrawal and Srikant in

1994.  [15]
- DHP (Direct Hashing and Pruning) by Park

and Al in 1995 [17]
- Partition by Savasere and Al in 1995.  [13]
- Sampling by Toivonen in 1996.  [18]
- DIC (Dynamic Itemsets Counting) by Bit and

Al in 1997.  [19]

To limit the candidates’ number
considered at each iteration, the Apriori algorithm
(and its derivatives) is based on the following two
properties:

Property 1
All subsets of frequent itemsets are

frequent. This property makes it possible to limit
the number of generated candidates during the
Kth iteration by the conditional join of K-1 size
frequent itemsets, discovered previously.

Property 2
All supersets of infrequent itemsets are

Infrequent. This property helps removing a K-size
candidate when at least one of its K-1 size subsets
is not part of the previously discovered frequent
itemsets.

Mining association rules in a distributed
environment

As a result of the expansion of storage
physical supports and the increasing needs to store
more and more data, the sequential algorithms of

researching association rules have been proved
ineffective. Thus the introduction of new parallel
versions became imperative. The current parallel
and distributed algorithms are based on the
sequential algorithm Apriori. Two paradigms of
parallelism are used: data parallelism and task
parallelism. The parallelization requires a new
property in addition to the two properties previously
seen in the sequential extraction of association
rules.

Property 3
So that an itemset is globally frequent it is

necessary that it is locally frequent on a site at
least.

Data’s Parallelism
In this type of paradigm, each node counts

the same candidates’ set. The sets are duplicated
on all processors and the database is distributed
through these processors. Each processor is
responsible for calculating local supports of all
candidates which are the supports in its database
partition. All processors calculate then the global
supports of candidates which are the total supports
of candidates in the entire database by the
exchange of local supports. Thereafter, the frequent
itemsets are calculated by each processor
independently.

CD (Count Distribution) algorithm
proposed in [20] is based on the Apriori algorithm.
It is realized in a distributed environment where
each site treats its local portion of transactions’
database, calculates local supports of the
candidates and broadcasts them to other sites to
calculate the global support.

Consequently each processor generates
the same global set of frequent itemsets which is
important at each step, so; the replication of
calculation decreases performance. CD has a
simple communication system to exchange local
supports; it uses communication based on a
general distribution (Broadcast all-to-all). On the
contrary it suffers from a strong cost of
communication due to general distribution for
exaggerated set of generated candidates in each
step.
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To cover these limits, other parallelization
of Apriori algorithm, FDM (Fast Distributed Mining)
algorithm [22] proposed new techniques to deduce
the candidates’ number considered for computing
the support. The first, local pruning which consists
in deleting element X of candidates set on site if X
is not locally frequent in its local database. Once
that local pruning is realized, each site diffuses
the supports of the remaining candidates to other
sites. At the end of each iteration, each site adds
these local supports to generate global frequent
itemsets from total database, this technique is
called global pruning. The FDM algorithm
minimizes the generated candidates set which
permit to reduce the number of messages
transmitted between sites and execution time.

DMA (Distributed Mining Algorithm)
algorithm21 uses pruning technique at each site
and retains only frequent itemsets. The local
supports of frequent itemsets on each site are
employed to decide if a frequent itemset is heavy
(locally frequent in partition and globally frequent
in the entire database). DMA generates reduced
set of itemsets then it generates candidates from
the heavy frequent itemsets. DMA introduces a
new technique for optimizing communication in
order to reduce messages size and to avoid their
duplication. Instead diffusing local supports of all
candidates as in CD, DMA associates each itemset
a voting site which is responsible for collecting its
local supports.

Another algorithm ODAM (Optimized
Distributed Mining Association)23  follows the CD
and the FDM paradigm. The difference is that
ODAM eliminates all global infrequent 1-itemsets
from each transaction and inserts new transaction
in memory. It starts then on the new transactions
into memory and it generates the candidate
itemsets supports of successive length. Then, the
global frequent itemsets corresponding to this
length by diffusing supports of candidate itemsets
after each pass.  ODAM proposes another
improvement in communication schema reducing
messages exchanges by sending support of
candidate itemsets to a simple site called receiver.
The receiver announces global frequent itemsets
to distributed sites.

Tasks Parallelism
All candidates are partitioned and

distributed through processors as well as the
database. Each processor is responsible to
maintain only global supports of candidates’
subset. This approach demands two
communication scans in each iteration. In the first
one, each processor sends its database partition
to all other processors. In the second pass, each
processor diffuses frequent itemsets that it found
to all other processors to calculate candidates of
the next iteration.

These algorithms include DD
(Distribution Data)20], which is an algorithm derived
from Apriori. It differs from CD in the sense where
processors do not share the job by database
portion but by candidates. The itemsets supports
are always calculated locally at each iteration.
Then, between two iterations we broadcast the
local partition of data. The major advantage of DD
is that it is conceived for better exploiting all the
memory. However, this algor ithm implies a
considerable quantity of communication between
all processors to exchange their local partitions at
each step. Thus, It suffers from a strong cost of
communication due to this broadcasting.

In order to reduce the cost and charge in
communication for this algorithm, a new version
was proposed considering the processors as a
logical ring: IDD (Intelligent Data Distribution) [26].
It is an improvement of the DD algorithm. Firstly,
instead of a “round robin” partitioning of the
candidate, IDD partitions candidates to processors
based on the first item of candidates, i.e. the
candidates with the same prefix item will be put in
the same partition. Therefore, before the treatment
of any transaction each processor must ensure
that it contains the appropriate prefixes that are
assigned to this processor. Otherwise, the
transaction can be rejected.

The entire database is always
communicated, but a transaction is not treated if it
does not contain the appropriate itemsets. That
reduces the redundant calculation in DD, and then
each processor must check all subsets of each
transaction. To realize a charge balancing in the
candidates’ distribution, it calculates initially for
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each item the candidates number starting with this
item and it assigns the itemsets to candidates’
partitions so that the number of candidates in each
partition is the same. It also adopts a ring
architecture to improve performance and to reduce
the cost of communication, i.e. it employs the
asynchronous communication from point to point
between neighbors in a ring instead of
broadcasting.

Another algorithm HPA (Hash Partitioned
Apriori)24 is conceived to improve the IDD
algorithm. Each processor generates k-itemsets
candidates using (k-1)-itemsets frequent from the
previous step. The hash function is then applied to
the candidate itemsets to determine the ID of their
host processor. Each candidate itemset is then
inserted into a hash table of its host processor. In
the next step, each processor calculates support
of candidates k-itemsets from transactions stored
on its local disk by eliminating those whose support
is lower than MinSup. The hash function is then
applied to each k-itemset to determine the ID of its
host processor. Each processor is then responsible
to increment the support value of itemsets
generated locally and those sent by other
processors to determine the frequent itemsets. As
a result, the number of communications is reduced
because all transactions in the database are not
diffused.

Other types of parallelism
There are other algorithms that cannot

be classified in the two paradigms. Eclat algorithm25

was introduced by M.J.Zaki in 1997, it is based on
database division into equivalence classes and
workload distribution on all processors. It begins
by a database scan to construct the frequent
itemsets of size 2 (L2).

Then, it partitions L2 into equivalence
classes which will be redistributed on processors
with a balancing policy. It creates a vertical
transformation of the database, it is then necessary
to transmit respectively transactions lists to
processors responsible of the corresponding
equivalence class. In parallel, each processor
generates independently frequent itemsets by
intersecting transaction lists of each element in an
equivalence class between them. The final task of

algorithm consists in accumulating results of each
processor. The most expensive task of the Eclat
algorithm is generally the transmission of
transaction lists with a significant size of each item
to other processors. Moreover, this algorithm
requires a considerable time to partition the items
set into equivalence classes and to transform the
local database into a vertical base.

Another proposed solution combines CD
and IDD, HD (Hybrid Distribution)26. It partitions P
processors in G groups of equal sizes, where each
group is considered as super-processor. IDD
algorithm is used within groups and CD algorithm
between groups. The database is partitioned
horizontally between super-processors G and
candidates are divided between P/G processors
in group. Additionally, HD adjusts the groups’
number dynamically on each pass. The advantage
of HD is that it reduces the cost of database
communication and tries to keep the processor
occupied.

Parallel partition algorithm
Many parallel and distributed algorithms

were proposed for distributed mining of association
rules. The objective of these is to reduce the
communication cost which constitutes an important
factor to measure their performance. However, the
majority of these algorithms usually present a high
number of data scanning and multiple phases of
synchronization and communication which
degrades their performances.

To resolve these disadvantages we chose
the sequential algorithm Partition13 and we focused
on the parallelization of this algorithm. This latter
requires only two database scans, which permit to
reduce the communication number in the parallel
version of this algorithm.

Partition Algorithm
Proposed by A.Savasere, E.Omiecinski

and S. Navath in 1995, the approach adopted by
this algorithm is to divide the database into
horizontal partitions of the same size, where the
size of each partition depends on the memory size
so that the entire partition can reside in memory
with intention that it is read only once in each phase,
also depends on transactions average size, current
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minimal support threshold and items number. It is
executed on each subset of transactions (Partition)
independently, producing in1st scanning a set of
frequent local itemsets for each partition. The set
of global candidates is formed by the union of all
sets of frequent local itemsets. To obtain the total
support for these itemsets, a 2nd scan of database
is necessary.

The following pseudo code presents
Partition algorithm phases:

The transactions are in the form:  <TID , Ij

, Ik… In>, transaction elements are supposed to be
sorted in lexicographical order, The items in the
itemset are also conserved sorted depending on
this order.

To determine at same time the frequent
itemsets for each partition, and to count global
supports during the counting phase, Partition
algorithm employs new data representation TID-
list, TID-list associates to each itemset X a list of all
transactions’ TID where this itemset appears. In
other words the database is transformed into pairs
<X, TID-list>. TID-lists are sorted so that their
intersection can be calculated in a simple manner
during joint’s phase, which requires just one read
of the two lists. TID-lists change in each pass and
can be permuted in disk if there is not sufficient
available memory to store them. Moreover, they
are used for the elimination of all useless data,
because TID-lists of not-frequent items can be
removed easily. The example in figure 3 illustrates
the initial database’ presentation and the
intermediate results; the minimum support is
equivalent to 3 occurrences.

Fig. 1: Pseudo code of partition algorithm phases

Phase I
Takes N iterations, during iteration i only

the partition pi is considered. The procedure
gen_large_itemsets presented below takes
partition pi for entry and generates the frequent
local itemsets of all lengths (L2

i , L3
i … Ll

i ).(see
figure2)

Fig. 2: Pseudo code of phase 1

Fig. 3: Representation of TIDs and TID-Lists

After the generation of the frequent local
itemsets, the fusion phase joins itemsets with the
same length for all N partitions to generate a set of
the global candidate itemsets. The global candidate
itemsets’ set of length j is calculated as: Cj

G= i=1,…,n

Lj
i.

Phase II
The gen_final_count procedure

illustrated in figure.4 uses a counter for each global
candidate itemset, calculates its support in the
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database and generates the frequent global
itemsets.

Phase 2
After having received the result of phase

1, the coordinator identifies the global candidates’
set CG, by the union of locally frequent itemsets of
each processor (treatment realized in merged
phase of Partition algorithm). The result is passed
to all processors. In the end of this phase, all nodes
will have exactly the same set of candidate itemsets.

Phase 3
corresponds to phase II of the sequential

algorithm, where each processor must determine
the support for all itemsets in CG, then to send
them to the coordinator.

Phase 4
After having received result from phase

3, the coordinator will identify the set of global
frequent itemsets by supports addition of each
itemset.

Fig. 4: Gen_final_count procedure

Parallel algorithm of Partition
We describe in this section the parallel

approach of Partition algorithm which can be
effectively applied for association rules’ extraction
in a distributed environment.

In our approach the adapted topology is
viewed as a set of N sites (clients) managed by a
site called the coordinator (server).  The parallel
algorithm as shown in figure.5 executes in four
phases:

Fig. 5: Parallel algorithm of Partition

Phase 1
Each processor has a partition, it applies

the gen_large_itemsets procedure on local data
in order to identify a set of locally frequent itemsets
Li, and then it sends the result to the coordinator.
As local data size in all nodes is approximately
equal, this phase will take approximately an equal
time in all nodes by realizing a charge balancing.
Moreover, only data available locally are treated.
Consequently, there is no communication cost for
the synchronization or data transfer between
nodes.

Fig. 6: Algorithm illustrated role of the
coordinator and the different sites
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The database is partitioned to N sites
(clients) in an equitable way by dividing the
number of transactions on the number of sites, i.e.
each site will have a transaction set (partition),
where each one is responsible to identify a set of
frequent itemsets in order to discover the
interesting rules. The following algorithm in figure6
shows the role of the coordinator and the different
sites in each algorithm phase.

EXPERIMENTS

To study the performance of the parallel
Partition algorithm, we realized several
experiments by varying the topology configuration
parameters (sites number), the minimal threshold
and the number of transactions. The database used
contains 12 items and 50000 transactions.

Sequential algorithm experiments
From test results, we can note that the

more the value of minimal support decreases, the
more the execution time increases. This is
explained by an important number of candidates
generated after each iteration. We observe also
that the more the transaction number increases,
the more the execution time increases.  For the
number of partitions, the execution time diminishes
as the number of partitions grows bigger.

(a)

(b)
Fig. 7: Parallel algorithm of Partition on:

(a) 50000 transactions (b) 25000 transactions
Fig. 8: Sequential and parallel Partition on:

(a) 5,8,10 partitions respectively, 25000
transactions (b) 5,8,10 partitions
respectively, 50000 transactions
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Parallel algorithm experiments
From implementation of our parallel

algorithm, we note a significant gain of execution
time, particularly for a high number of partitions, a
large database and a minimal value of support.
(see figure7)

Comparative study with the sequential algorithm
We observe from the comparative results

showed in figure 8, a remarkable reduction in
execution time comparing with sequential version of
Partition algorithm. Moreover, execution time
decreases considerably by increasing the number
of sites (partitions). We also notice a great time saving
especially for an important number of transactions,
this implies a minimal cost of communication between
sites. This experimentation shows also a moderate
increase in the execution time by increasing the
minimal support value and the transaction number.

Comparative study with the Count Distribution
algorithm

From the comparative results with the
Count Distribution algorithm, we observe in figure
9, a satisfactory reduction of the execution time
particularly for a significant number of nodes and
transactions as well as a minimal value of support.
This is due to the exchanges of important data
(candidates) between nodes in CD algorithm
during each pass, which is not the case for our
parallel Partition algorithm.

CONCLUSION

Recently several parallel algorithms for
the extraction of association rules appeared, after
a study of some of these algorithms, we noticed
that most of these algorithms usually require a high
number of data scans and multi-phase of
synchronizations and communication which
degrade their performances. Our objective was to
conceive a distributed algorithm for extracting
frequent itemsets considering these criteria. After
a detailed study of Partition algorithm which
requires only two scans of the database, we
proposed our contribution where we are interested
in reducing the execution time by the parallelization
of Partition algorithm in distributed and parallel
environments.  Thus, we used a centralized
approach to reduce the communication cost.

Fig. 9: CD and parallel Partition on: (a) 5,8,10
partitions respectively, 25000 transactions (b) 5,
8, 10 partitions respectively, 50000 transactions
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The parallel Partition algorithm presented
in this paper was implemented on different
dimensions, database sizes, support values and
the number of sites (partitions). The use of a super-
coordinator in communication permitted to reduce
the number of messages exchanged between
sites, because a message sending is done directly
via a super-coordinator. Moreover, our parallel
algorithm has only two phases which implies
communication and the size of the messages sent
during the two phases is very small. This is because
this algorithm exchanges only accounts for locally
frequent itemsets, of which the number represents
one fraction of the candidates’ number. These
minimal costs of communication and data scanning

permitted to reduce execution time and to amplify
the algorithm’s performance. In comparison with
the count distribution algorithm, we can note that
the Parallel Partition algorithm represents a
remarkable time-saving for large databases, where
the number of sites is big and the support values
are small. In perspective, this algorithm can be
improved in two axes:
· A single scan of the database. In other

words, the algorithm uses in phase II the
calculations of supports solved in phase I
without the obligation of a second scan.

· An intelligent partitioning of the database
by applying a clustering algorithm on the
entire database.
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