
ORIENTORIENTORIENTORIENTORIENTAL JOURNAL OFAL JOURNAL OFAL JOURNAL OFAL JOURNAL OFAL JOURNAL OF
COMPUTER SCIENCE & TECHNOLCOMPUTER SCIENCE & TECHNOLCOMPUTER SCIENCE & TECHNOLCOMPUTER SCIENCE & TECHNOLCOMPUTER SCIENCE & TECHNOLOGOGOGOGOGYYYYY

www.computerscijournal.org

ISSN: 0974-6471
June 2013,

Vol. 6, No. (2):
Pgs.33-43

An International Open Free Access, Peer Reviewed Research Journal
Published By: Oriental Scientific Publishing Co., India.Oriental Scientific Publishing Co., India.Oriental Scientific Publishing Co., India.Oriental Scientific Publishing Co., India.Oriental Scientific Publishing Co., India.

INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION

Grid ComputingGrid ComputingGrid ComputingGrid ComputingGrid Computing
Grid computing has emerged to satisfy

high performance scientific computing with more
computing power. Grid consists of geographically
distributed computers linked through internet to
create virtual super computer for collecting vast
amount of computing capacity to solve complex
problems. Foster and Kesselman1 defined Grid
computing as “A Computational Grid is a hardware

Design and Development of Agent Based Architecture forDesign and Development of Agent Based Architecture forDesign and Development of Agent Based Architecture forDesign and Development of Agent Based Architecture forDesign and Development of Agent Based Architecture for
Effective REffective REffective REffective REffective Resource Utilization in a Grid Environmentesource Utilization in a Grid Environmentesource Utilization in a Grid Environmentesource Utilization in a Grid Environmentesource Utilization in a Grid Environment

PPPPP. DEEP. DEEP. DEEP. DEEP. DEEPAN BABUAN BABUAN BABUAN BABUAN BABU11111 andandandandand T T T T T. AMUDHA. AMUDHA. AMUDHA. AMUDHA. AMUDHA22222

1Department of IT & CT, VLB Janakiammal College of Arts and Science, Coimbatore, Tamil
Nadu,(India).

2Department of Computer Applications, Bharathiar University, Coimbatore, Tamil Nadu, (India).
Correponding author :pdeepan_13@yahoo.co.in, amudhaswamynathan@buc.edu.in

(Received: June 01, 2013; Accepted: June 06, 2013)

A B S T R A C TA B S T R A C TA B S T R A C TA B S T R A C TA B S T R A C T

Software agents are the autonomous, problem-solving computational entities capable of
effective operation in dynamic and open environments. Intelligent agent is a type of software
agent, autonomous in nature which observes and acts upon environment and performs some
task at each host. Agent can also coordinate, reason, solve a problem, clone and merge with other
agents. A Grid is a set of resources (such as CPU, Memory, Disk, Applications, and Database)
distributed over wide area networks and supports large scale distributed applications. Resources
in grid are geographically distributed, linked through internet, to create virtual super computer for
vast amount of computing capacity to solve complex problems. Genetic Algorithm works with key
parameters such as fitness function, crossover probability and mutation probability and optimizes
task scheduling. The paper proposes a software agent based architecture to utilize the resources
effectively in Grid environment. The architecture is compared and analyzed the resource utilization
with three algorithms namely Shortest job first, Arbitrarily Scheduling Algorithm and Genetic algorithm.
The efficiency of resources utilization is analyzed and suitable algorithm is suggested.

KKKKKey words: ey words: ey words: ey words: ey words: Grid Computing, Software Agent, Evolutionary Technique,
Genetic Algorithm, Load balancing.

and software infrastructure that provides
dependable, consistent, pervasive, and
inexpensive access to high-end computational
capabilities”. Resources in grid are geographically
distributed, linked through internet, to create virtual
super computer for vast amount of computing
capacity to solve complex problems.

Data grid primarily deals with data
repositories, sharing, accessing and managing
large amount of distributed data. A Data grid is a

3 4

major type of grid2, used in data-intensive
applications; where size of data files reach tera or
sometimes peta bytes. High Energy Physics (HEP),
Genetic and Earth Observation, are examples of
such applications. Data Grid is an integrating
architecture that connects a group of
geographically distributed computers and storage
resources that enable users to share data and
resources.

Computational grid is developed to solve
problems that require processing a large quantity
of operations. Many research projects require lot
of CPU time, some requires a lot of memory and
some projects need the ability to communicate in
real time. Today super computers are not enough
to solve those needs. They don’t have the capacity,
even if they did, it would not be economically
justifiable to use these resources. Computational
grids are the solution to all these problems and
many more. Grid is a convenient way to connect
many devices (e.g., processors, memory and IO-
devices) so that end users are able to use all
devices, computational powers combined for a
certain amount of time.

Software AgentsSoftware AgentsSoftware AgentsSoftware AgentsSoftware Agents
The term agent derives from the present

participle of Latin verb agree: to derive, lead, act or
do. The American Heritage Dictionary defines an
agent as “One that acts or has the power or
authority to act or represent another or the means
by which something is done or caused; instrument.
Software agents are computer programs capable
of flexible, autonomous action, the most complex
form; agents may persist over time, capable of
timely internal context dependent reaction to
sensed events, plan and initiate unique series of
actions to achieve stated goals and communicate
with other agents or people toward those ends”.

A software agent is the software entity
which functions continuously and autonomously
in a particular environment often inhabited by other
agents and process. The following are some
features of software agents

• Reactivity, ability to selectively sense and
act.

• Autonomy, goal directedness, proactive and
self starting behavior.

• Collaborative, work in concert with other
agents to achieve common goal.

• Knowledge level communication ability,
ability to communicate with persons and
other agents with more resembling human
like speech acts.

• Inferential capability, act on abstract task
specification using prior knowledge of
general goals and preferred methods to
achieve flexibility.

• Temporal continuity, persistence of identity
and state over long period of time.

• Personality, capability of manifesting the
attributes of a believable character such as
emotion.

• Adaptivity, being able to learn and improve
with experience.

• Mobility, being able to migrate in a self-
directed way from one host platform to other

Evolutionary AlgorithmEvolutionary AlgorithmEvolutionary AlgorithmEvolutionary AlgorithmEvolutionary Algorithm
Evolutionary algorithms (EAs) are

principally a stochastic search and optimization
method based on the principles of natural
biological evolution. Evolutionary Algorithms
operate on a population of potential solutions,
applying the principle of survival of the fittest3 to
produce successively better approximations to a
solution. At each generation of the EA, a new set of
approximations is created by the process of
selecting individuals according to their level of
fitness in the problem domain and reproducing
them using variation operators.

Genetic AlgorithmGenetic AlgorithmGenetic AlgorithmGenetic AlgorithmGenetic Algorithm
A Genetic algorithm (GA)4 is a search

heuristic that mimics the process of natural
evolution. This heuristic is routinely used to
generate useful solutions to optimization and
search problems. Genetic algorithms belong to the
larger class of evolutionary algorithms (EA), which
generate solutions to optimization problems using
techniques inspired by natural evolution, such as
inheritance, mutation, selection, and crossover.

A GA approach starts with a generation
of individual. Individuals are encoded as strings
known as chromosome and a chromosome
corresponds to a solution to solve the above said
problem. Each individual is evaluated by the fitness

3 5

function. Three major operations, selection,
crossover and mutation operations5 are part of the
GA based on some key parameters such as fitness
function, crossover probability and mutation
probability. All these parameters are used for the
optimization of task scheduling.

Genetic algorithm was developed to
simulate some of the processes observed in natural
evolution, a process that operates on
chromosomes. The following algorithm shows the
general principle and working of Genetic algorithm.

Algorithm GeneticAlgorithm ()Algorithm GeneticAlgorithm ()Algorithm GeneticAlgorithm ()Algorithm GeneticAlgorithm ()Algorithm GeneticAlgorithm ()
1. Formulate initial population.
2. Randomly initialize population.
3. Repeat
a. Evaluate objective function.
b. Find Fitness function.
c. Apply genetic operators.
i. Selection.
ii. Crossover.
iii. Mutation.
 Until Condition Satisfies.

SelectionSelectionSelectionSelectionSelection
Individual solutions are selected through

a fitness-based process, where fitter solutions (as
measured by a fitness function) are typically more
likely to be selected. Certain selection methods
rate the fitness of each solution and preferentially
select the best solutions. The method used to select
the individual is Roulette-Wheel selection.

CrossoverCrossoverCrossoverCrossoverCrossover
A crossover operator is used to

recombine two strings to get a better string. In the
crossover operator new strings are created by
exchanging information among strings of the
mating pool. In One point crossover binary string
from beginning of chromosome to the crossover
point is copied from one parent, and the rest is
copied from the second parent.

Fig 1 shows the Two point crossover,
selects binary string from beginning of
chromosome to the first crossover point from one
parent, the part from the first to the second
crossover point is from the second parent.

MutationMutationMutationMutationMutation
 Mutation is the next process after

crossover, it alters one or more gene values in a
chromosome from its initial state. The solution after
mutation may change entirely from the previous
solution. Hence, Genetic Algorithm may also give
better solution by using mutation.

Literature reviewLiterature reviewLiterature reviewLiterature reviewLiterature review
The researchers Saeid Abrishami,

Mahmoud Naghibzadeh and Dick Epema (2010)
developed a model in which users negotiate with
providers on required Quality of Service and on
corresponding price to reach a Service Level
Agreement. One of the most challenging problems
in utility grid is scheduling, i.e., the problem of
satisfying users’ QoS as well as minimizing the
cost of workflow execution. They proposed a new
QOS-based workflow scheduling algorithm based
on a novel concept called Partial Critical Path. The
algorithm recursively scheduled the critical path
ending at a recently scheduled node. The algorithm
minimized the cost of workflow execution while
meeting a user-defined deadline 6.

Mustafizur Rahman, Rajiv Ranjan,
Rajkumar Buyya and Boualem Benatallah (2011)
have analyzed the Grid environment as the
availability, performance, state of resources,
applications, services, and data undergo
continuous changes during the life cycle of an
application. They stated that uncertainty is a major
task in Grid environments by node failures, task
dynamism, improper global knowledge, and finally
heterogeneity of resources and job. To overcome
the above challenges, the authors proposed
comprehensive taxonomy that characterizes and
classifies different software components and high-
level methods that are required for autonomic
management of applications in Grids. The

FFFFFig.1: Tig.1: Tig.1: Tig.1: Tig.1: Two point crossoverwo point crossoverwo point crossoverwo point crossoverwo point crossover

3 6

taxonomy not only highlights the similarities and
differences of state-of-the-art technologies utilized
in autonomic application management from the
perspective of Grid computing, but also identifies
the areas that require further research initiatives7.

Ajith Abraham and Fatos Xhafa (2009)
have written a survey paper on computational
models for Grid scheduling problems and their
resolution using heuristic and meta-heuristic
approaches. Scheduling problems are the heart
of Grid-like computational system. Scheduling
based on different criteria, such as static versus
dynamic environment, multi-objectivity, adaptivity
and so on. The paper revealed the complexity of
the scheduling problems in Computational Grids
compared to scheduling in classical parallel and
distributed systems, showed usefulness of heuristic
and meta-heuristic approaches for the design of
efficient Grid schedulers. The author’s discussed
various requirements for a modular Grid scheduling
and its integration with Grid architecture8.

Jia Yu and Rajkumar Buyya (2005) have
proposed a taxonomy that characterized and
classified various approaches for building and
executing workflows on Grids. The advent of Grid
and application technologies, scientists and
engineers are building more and more complex
applications to manage and process large data
sets, and execute scientific experiments on
distributed resources. Such application scenarios
require composing and executing complex
workflows. Therefore, many efforts have been made
towards the development of workflow
management systems for Grid computing. The
taxonomy not only highlights the design and
engineering similarities and differences of up to
date in Grid workflow systems, but also identifies
the areas that call for further research such as Load
balancing etc9.

N.Sivakumar and K.Vivekanandan (2012)
said that Agent technology is meant for developing
complex distributed applications. Software agents
are key building blocks of a Multi-Agent System
(MAS). Software agents are unique in nature as it
possesses certain distinctive properties such as
Pro-activity, Reactivity, Social-ability, Mobility etc.,
Agent’s behavior might differ for same input at

different cases and thus testing an agent and to
evaluate the quality of an agent is a tedious task.
The main objective of the authors is to come out
with a set of measures to evaluate agent’s
characteristics in particular reactive property. They
applied five agents in online shopping system and
evaluated, finally identified that the reactivity
property and the results are encouraging10.

Caddie Shijia Gao and Dongming Xu
(2006) have formulated a conceptual model for
Anti-Money Laundering using Simon’s decision-
making process model. For a more adaptive,
intelligent and flexible solution for anti-money
laundering, the intelligent agent technology is
applied in this research. Intelligent agents with their
properties like autonomy, reactivity and proactivity
are well suited for money laundering prevention
controls. Several types of agents are proposed and
open multi-agent architecture is presented for anti-
money laundering. A prototype system for money
laundering detection is developed to demonstrate
the advances of the proposed system architecture
with business values11.

R. Tavakkoli-Moghaddam, N.
ShahsavariPour, H. Mohammadi-Andargoli and M.
H. Abolhasani Ashkezari, (2012) addressed the
permutation of a flexible job shop problem that
minimizes the makespan and total idleness as a
bi-objective problem. They developed duplicate
genetic algorithm (DGA) worked based on the GA,
offers a better solution than the standard GA
because it includes the rational and appropriate
justification. It provides local search for the best
solution in every generation with the neighborhood
structure in several stages and stores them in an
external list for reuse as a secondary population
of the GA. The performance of the duplicate GA is
evaluated by a number of numerical experiments.
Comparing the results of the DGA with other
algorithms realized that proposed DGA is efficient
and appropriate for solving the given problem12.

Xiaowei Yan, Chengqi Zhang and
Shichao Zhang (2009) have designed a genetic
algorithm based strategy for identifying association
rules without specifying actual minimum support.
The approach elaborate an encoding method and
relative conûdence is used as the ûtness function.

3 7

With genetic algorithm, a global search performed
and system automation is implemented, model
does not require the user-speciûed threshold of
minimum support. Furthermore, expand this
strategy to cover quantitative association rule
discovery. For eûciency a generalized FP-tree is
implemented. Experiment evaluated and
demonstrated algorithms have found significant
reduction in computation costs13.

Shen Wang, Bian Yang and Xiamu Niu
(2010) have developed an extensive application
of steganography, it is challenged by steganalysis.
The most notable steganalysis algorithm is the RS
attack which detects the steg-message by the
statistic analysis of pixel values. To ensure the
security against the RS analysis the authors
presented a new steganography based on genetic
algorithm. The LSB (least signicant bit) of the
message, the pixel values of the steg-image are
modied by the genetic algorithm to keep their
statistic characters. Thus, the existence of the secret
message is hard to be detected by the RS analysis.
Meanwhile, better visual quality achieved by the
proposed algorithm. The experimental results
demonstrated the effectiveness of proposed
algorithm resistance to steganalysis with better
visual quality14.

Proposed architectureProposed architectureProposed architectureProposed architectureProposed architecture
Resource allocation is the major

responsibility of Grid Environment where multiple
requests arise from users with differing resource
requirements. Figure 2 shows the proposed
architecture, with layer approach. Each layer uses
various Agent to deploy its service, the schedulers
are operated with three techniques, Shortest Job
first, Arbitrary Scheduling Algorithm, and Genetic
Algorithm based scheduling.

Resource NegotiatorResource NegotiatorResource NegotiatorResource NegotiatorResource Negotiator
The resource negotiator is the interface

between user and scheduler. An intelligent agent
is an autonomous system situated within the
environment; it senses its environment, maintains
knowledge and learns upon obtaining data. User
layer is one of the functionality done by resource
negotiator. The resource negotiator is a
combination of various functions along with two
agents User interface agent, Job routing agent.

Main objective of these agents are to provide
learning and communication.

User interface agentUser interface agentUser interface agentUser interface agentUser interface agent
Interface agents are computer programs

that have ability to learn user preference and user
habits and provide proactive and reactive
assistance in order to increase the user ’s
productivity.

Job Queue and JDLJob Queue and JDLJob Queue and JDLJob Queue and JDLJob Queue and JDL
Job queue is a buffer in Resource

Negotiator to hold user requested jobs for short
time. Each request is heterogeneous in nature. To
store User’s request efficiently Job Queue is used.
JDL (Job Description Language) is essential in
Grid based environment as Heterogeneous jobs
are submitted. JDL is a specification that focuses
on the description of computational task. JDL
describes the aspects of job, Resource
requirements to compute, and time taken for
execution. The job is submitted to the Routing
Agent, by verifying address from Global
Addressing. Global Addressing is a mechanism
used in environment to provide directory service.

Job Routing AgentJob Routing AgentJob Routing AgentJob Routing AgentJob Routing Agent
Learning and communication are major

functionality performed by Job routing agent.
Learning is a main advantage that allows the
agents to initially operate in unknown
environments and to become more competent than
its initial knowledge. Job routing agent learns the
request from Job Queue and identifies type of
request through JDL. The Communicative Agent
works only as an interface between two
components and provides services to others.
Communication is another function done by Job
routing agent, it acts as an interface between
Resource negotiator and Scheduler. The Main role
of Communicative Agent is proper allocation of
job to scheduler and after completion of task; it
returns solution to User interface agents. Job
routing agent maintains a queue called Job
Dispatcher, a buffer region of memory storage used
to temporarily hold data while it is being moved
from one place to another.

SchedulerSchedulerSchedulerSchedulerScheduler
Scheduler is a major component of this

3 8

Moldable job requestMoldable job requestMoldable job requestMoldable job requestMoldable job request
The relation between the number of

resources and the request definition are identified
by user’s application. User is responsible for
deciding number of resources and how long they
are needed. The request has two moldability
parameter specification, amount of resources R
and time T.

Fig 3 shows the moldable request, with
four requests runs and four resources. The request
and resources are specified by user. In this figure,
Request-1 requires three resources to complete
its task. After completion of work from Resource-1,
Request-1 is allocated to Resource-2, after
completion it is allocated to Resource-3. Moldable
request uses two constraints which are operator
precedence and machine constraints. Operator
precedence constraint indicates that order of
operations is not fixed and processing of operations
cannot be interrupted. Machine constraint indicates
single job should be executed at a time.

SchedulingSchedulingSchedulingSchedulingScheduling
Shortest Job First Scheduling AlgorithmShortest Job First Scheduling AlgorithmShortest Job First Scheduling AlgorithmShortest Job First Scheduling AlgorithmShortest Job First Scheduling Algorithm

Shortest-job-first (SJF) scheduling
algorithm associates with each process the length
of the process’s next processing time. When the
resource is available, it assigns the process, which
has smallest processing time next. The following
algorithm shows the shortest job first approach.

Algorithm Shortest Job FirstAlgorithm Shortest Job FirstAlgorithm Shortest Job FirstAlgorithm Shortest Job FirstAlgorithm Shortest Job First
Scheduling(NumberOfNode)Scheduling(NumberOfNode)Scheduling(NumberOfNode)Scheduling(NumberOfNode)Scheduling(NumberOfNode)

//NodeTime indicates time taken to complete its
operation
1. Repeat For I =0 to NumberOfNode by 1 do:

research architecture. Scheduler has a collection
of resources, selects appropriate resources for job
and allocates the job. Two agents are used in this
layer, Collaboration agent and Interface agent
(Resource interface). Collaboration agent works
based on collaboration, with Resource negotiator
and Resources. Resource interface agent is used
to allocate job to resources.

Collaborative AgentCollaborative AgentCollaborative AgentCollaborative AgentCollaborative Agent
Agency is the degree of autonomy and

authority vested in agent, and measured
qualitatively by nature of the interaction between
the agents. Collaborative agent performs its
collaboration by forming agency. The functionality
of collaborative agents are, Collects the Job and
Resources from Job Routing agent, Selects the
Resources from multiple locations, Forms Virtual
organization from selected resources with
Scheduler, Scheduler allocates the job to
resources, collects the solution returned from
resources, Finally dispatch the solution to Job
Routing agent from Job Dispatch.

Fig. 2: Proposed Agent Based Architecture forFig. 2: Proposed Agent Based Architecture forFig. 2: Proposed Agent Based Architecture forFig. 2: Proposed Agent Based Architecture forFig. 2: Proposed Agent Based Architecture for
Grid SchedulingGrid SchedulingGrid SchedulingGrid SchedulingGrid Scheduling

Fig. 3: Moldable RequestsFig. 3: Moldable RequestsFig. 3: Moldable RequestsFig. 3: Moldable RequestsFig. 3: Moldable Requests

3 9

1.Repeat For J = I+1 to NumberOfNode by 1 do:
a.I f NodeTime[I] > NodeTime[J], then
[Time Allocation.]
i. Set Temp := NodeTime [I].
ii. Set NodeTime[I] := NodeTime[J].
iii. Set NodeTime[J] := Temp.[Node

Allocation.]
iv. Set Temp2 := Node[I].
v. Set Node[i] := Node[j].
vi. Set Node[J] := Temp2.
[End of For.]
[End of For.]
2. Call TurnATime(Node, NR, NM, Size)
3.Exit.

Arbitrary Scheduling AlgorithmArbitrary Scheduling AlgorithmArbitrary Scheduling AlgorithmArbitrary Scheduling AlgorithmArbitrary Scheduling Algorithm
This method uses the play of chance to

assign a node by comparison groups in a trial, e.g.
computer-generated random sequence. Arbitrary
Scheduling implies that each individual or unit
being entered into a trial has the same chance of
receiving each of the possible interventions. It also
implies that the probability an individual receive a
particular intervention is independent of the
probability that any other individual receive the
same intervention.

Algorithm Arbitrary SchedulingAlgorithm Arbitrary SchedulingAlgorithm Arbitrary SchedulingAlgorithm Arbitrary SchedulingAlgorithm Arbitrary Scheduling
AlgorithmScheduling (NumberOfNode)AlgorithmScheduling (NumberOfNode)AlgorithmScheduling (NumberOfNode)AlgorithmScheduling (NumberOfNode)AlgorithmScheduling (NumberOfNode)
1. Set Count:= 1, Z := 0.
2. Repeat While Z d” NumberOfNode, do:
a. Set Alloval[z] :=

RandomNum(NumberOfNode).
b. Set Z := Z+1. [End of While.]
3. Repeat While (Count>0), do:
a. Set Y := 0.
b. Set Alloval := MinusAllo(Alloval,

NumberOfNode).
c. Repeat For Z=0 to NumberOfNode, by 1

do:
If(Alloval[Z]=-1), then
Set Count:=Count+1.
Else:
Set Y := Y+1.
[End of If.]
 [End of For.]

d. If (Y = NumberOfNode), then
Exit.[End of if.]

e. If (Count>0), then
1. Repeat For Z=0 to NumberOfNode, by 1

do:
If(Alloval[Z]==-1), then
Set
Alloval[Z]=RandomNum
(NumberOfNode).
[End of if.]
[End of For.]
[End of if.]
4. Call TurnATime(Alloval, NR, NM, Size)
5. Exit.

Algorithm RandomNumber(Size) //RandomAlgorithm RandomNumber(Size) //RandomAlgorithm RandomNumber(Size) //RandomAlgorithm RandomNumber(Size) //RandomAlgorithm RandomNumber(Size) //Random
GenerationGenerationGenerationGenerationGeneration
1. Select any number from 0 to Size
2. Return number.

Algorithm MinusAllocation(ArrayAlgorithm MinusAllocation(ArrayAlgorithm MinusAllocation(ArrayAlgorithm MinusAllocation(ArrayAlgorithm MinusAllocation(Array, Size), Size), Size), Size), Size)
1. Repeat For Z = 0 to Size by 1 do:
I. Repeat For Y = Z+1 to Size by 1 do:
a. If Array[Z] = Array[Y], then
b. Set Array[Y] := -1.

[End of For.]
[End of For.]

2. Return Array.

Genetic based Scheduling algorithmGenetic based Scheduling algorithmGenetic based Scheduling algorithmGenetic based Scheduling algorithmGenetic based Scheduling algorithm
Genetic based scheduling Algorithm SchedulingGenetic based scheduling Algorithm SchedulingGenetic based scheduling Algorithm SchedulingGenetic based scheduling Algorithm SchedulingGenetic based scheduling Algorithm Scheduling
(NumberOfRequest)(NumberOfRequest)(NumberOfRequest)(NumberOfRequest)(NumberOfRequest)
1. Create InitialPopulation().
2. Set A :=0 , Z := 0.
3. Repeat While Limit, do:
a. Set Z := Z+1.
b. Set NodeCount := 0, Count := 0.
c. Call Selection().
d. Call Crossover().
e. Set Sol := Child.
f. If (A = 0), then
i. Repeat For I = 0 to Limit by 1, do:
i. If (Node[i] = Sol), then
1. Set Alloval[a] := Sol
2. Set A := A+1.
 Else:
Repeat For I =0 to Limit by 1 do:
If (Node[i] = Sol), then
Set NodeCount := 1.
[End of If.]
[End of For.]
[End of If.]
[End of For.]
Else:

4 0

A. If (NodeCount = 1), then
 Repeat For J=0 to A by 1 do:

If (Alloval[J] = Sol)
Set Count := 1.
[End of If.]
[End of For.]
[End of IF.]
B . If (Count = 0), then
a. Set Alloval[A] := Sol.
b. Set A := A+1.
Else:
i. Call Mutation().
ii. Set MNodeCount := 0, MCount := 0.
iii. Set MSo1 := Child.
iv. Repeat For X = 0 to Size by 1 do:
If (Node[X] = MSo1), then
Set MNodeCount := 1.

 [End of If.]
 [End of For.]
v. If (MNodeCount = 1)
i. Repeat For Y = 0 to A by 1 do:
If (Alloval[Y] = MSo1), then
Set MCount := 1.
 [End of if.]
 [End of For.]
ii. If (MCount = 0), then
i. Set Alloval[A] := MSo1.
ii. Set A := A + 1.
 [End of If.]
[End of If.]
[End of Step B IF.]
[End of Step F IF.][
End of Step 3 Loop.]
4. Exit

Algorithm Selection()Algorithm Selection()Algorithm Selection()Algorithm Selection()Algorithm Selection()
1. Set PRan1 := Random(Limit).
2. Set PRan1 := Random(Limit).
3. Set Parent1 := InitialPopulation[PRan1].
4. Set Parent2 := InitialPopulation[PRan2].

Algorithm CrossOver()Algorithm CrossOver()Algorithm CrossOver()Algorithm CrossOver()Algorithm CrossOver()
1. Set Fv := Random(Limit).
2. Set Sv := Random(Limit).
3. Repeat For I=0 to Fv by 1 do:

Set Child[I] := Parent1[I].
[End of For.]

4. Repeat For I = Fv to Sv by 1 do:
Set Child[I] := Parent2[I].
[End of For.]

5. Repeat For I = Sv to Col by 1 do:
Set Child[I] := Parent1[I].
[End of For.]

Algorithm Mutation()Algorithm Mutation()Algorithm Mutation()Algorithm Mutation()Algorithm Mutation()
1. Set Fv := Random(MutationPoint).
2. Set Sv := Random(MutationPoint).
3. If (Child[Fv] = 0), then

Set Child[Fv] := 1.
Else (Child[Fv] = 0), then
Set Child[Fv] := 0.
[End of If.]

4. If (Child[Sv] = 0), then
Set Child[Sv] := 1.
Else (Child[Sv] = 0), then
Set Child[Sv] := 0.
[End of If.]

Completion TimeCompletion TimeCompletion TimeCompletion TimeCompletion Time
Completion time indicates the time at

which Resources(R) finalizes the processing of
previous assigned task. The equation 1,
ReadyTime[R] indicates the time when Resource
R finished its previously assigned tasks and
ExpectedTimeToComplete[T][R] indicates
completion time of task T.

...(1)
Resource UtilizationResource UtilizationResource UtilizationResource UtilizationResource Utilization

Minimizing the resource utilization of Grid
system is the important objective, due to economic
aspects of Grid System such as contribution of
resources. Aim of resource utilization is to
maximizing this value over all possible schedules.

...(2)

R E S U LR E S U LR E S U LR E S U LR E S U L T ST ST ST ST S

The proposed Agent based architecture
performs its tasks based on layered approach. The
First and foremost layer is the User layer (UL),
which has the User Interface Agent, that collects
the job and resource specification submitted by
the user and stores the jobs in job queue.

4 1

TTTTTable 1: Table 1: Table 1: Table 1: Table 1: Test Instancesest Instancesest Instancesest Instancesest Instances
AuthorAuthorAuthorAuthorAuthor JobJobJobJobJob InstanceInstanceInstanceInstanceInstance
Name RequestName RequestName RequestName RequestName Request NameNameNameNameName

J. Adams, E. 10 abz5, abz6
Balas and
D. Zawack
H. Fisher, G.L. 10 ft10
Thompson
S. Lawrence 10 la01, la02, la03, la04, la05,

 la16, la17, la18, la19, la20
D. Applegate, 10 orb01, orb02, orb03, orb04,
W. Cook orb05, orb06, orb07, orb08,

orb09, orb10
S. Lawrence 15 la06, la07, la08, la09, la10,

la21, la22, la23, la24, la25
S. Lawrence 20 la11, la12, la13, la14, la15,

la26, la27, la28, la29, la30
S. Lawrence 30 la31, la32, la33, la34, la35
R. H. Storer, 50 swv11, swv12, swv13, swv14,
S. D. Wu, swv15, swv16, swv17, swv18,
R. Vaccari swv19, swv20

c. Jobs with 20 requestc. Jobs with 20 requestc. Jobs with 20 requestc. Jobs with 20 requestc. Jobs with 20 request

The second Layer is the Resource
Negotiator. The Job Queue of Resource Negotiator
takes an account of all the submitted jobs. The Job
Description Language (JDL) describes the job
specification. Then the Resource Negotiator
assigns address for each job based on global
addressing method and submits the job with
address to a Job Routing Agent of Resource
Negotiator. Third layer is the Local Scheduler which
collects the respective job requests utilize

 Fig. 4: Comparison Chart of Average Fig. 4: Comparison Chart of Average Fig. 4: Comparison Chart of Average Fig. 4: Comparison Chart of Average Fig. 4: Comparison Chart of Average
Resource Utilization - 10 Requests JobsResource Utilization - 10 Requests JobsResource Utilization - 10 Requests JobsResource Utilization - 10 Requests JobsResource Utilization - 10 Requests Jobs

a. Jobs with 10 requestsa. Jobs with 10 requestsa. Jobs with 10 requestsa. Jobs with 10 requestsa. Jobs with 10 requests

Fig. 5: Comparison Chart for AverageFig. 5: Comparison Chart for AverageFig. 5: Comparison Chart for AverageFig. 5: Comparison Chart for AverageFig. 5: Comparison Chart for Average
Resource Utilization - 15 Request JobsResource Utilization - 15 Request JobsResource Utilization - 15 Request JobsResource Utilization - 15 Request JobsResource Utilization - 15 Request Jobs

b. Jobs with 15 requestb. Jobs with 15 requestb. Jobs with 15 requestb. Jobs with 15 requestb. Jobs with 15 request

Fig. 6: Comparison Chart for AverageFig. 6: Comparison Chart for AverageFig. 6: Comparison Chart for AverageFig. 6: Comparison Chart for AverageFig. 6: Comparison Chart for Average
Resource Utilization - 20 requests jobsResource Utilization - 20 requests jobsResource Utilization - 20 requests jobsResource Utilization - 20 requests jobsResource Utilization - 20 requests jobs

Fig. 7: Comparison Chart for AverageFig. 7: Comparison Chart for AverageFig. 7: Comparison Chart for AverageFig. 7: Comparison Chart for AverageFig. 7: Comparison Chart for Average
Resource Utilization - 30 request jobsResource Utilization - 30 request jobsResource Utilization - 30 request jobsResource Utilization - 30 request jobsResource Utilization - 30 request jobs

d. Jobs with 30 requestd. Jobs with 30 requestd. Jobs with 30 requestd. Jobs with 30 requestd. Jobs with 30 request

Fig. 8: Comparison Chart for AverageFig. 8: Comparison Chart for AverageFig. 8: Comparison Chart for AverageFig. 8: Comparison Chart for AverageFig. 8: Comparison Chart for Average
Resource Utilization - 50 request jobsResource Utilization - 50 request jobsResource Utilization - 50 request jobsResource Utilization - 50 request jobsResource Utilization - 50 request jobs

e. Jobs with 50 requeste. Jobs with 50 requeste. Jobs with 50 requeste. Jobs with 50 requeste. Jobs with 50 request

4 2

collaborative agents and schedules the resources
by communicating with the Fourth layer, Resource
Layer. Resource Layer maintains resources from
multiple locations.

The collaborative agents selects the
resource and group them to form virtual
organization with scheduler. The Scheduler applies
the scheduling algorithms such as SJF, ASA, and
GSA for scheduling jobs. Benchmark Problems are
gathered to the test working efficiency of algorithm.
The instances are taken from ORLIB15. The
architecture is implemented in Java with different
Job request.

Table 1 shows various test instances
tested in this architecture. The figures below show
that Genetic based Scheduling algorithm have
given best makespan as compared to Shortest Job
First, Arbitrary Scheduling Algorithm. From the
implementation of research work, it was observed
that the Genetic based Scheduling Algorithm

(GSA) is effective than Shortest Job First (SJF) and
Arbitrary Scheduling Algorithm (ASA) in solving
Moldable and Preemptive requests.

CONCLUSIONCONCLUSIONCONCLUSIONCONCLUSIONCONCLUSION

An Agent based Resource Negotiator has
been proposed in this research work to allocate
the resources in Grid Environment effectively
based on user requirements. The Resource
negotiator worked with three scheduling
techniques, Shortest Job First (SJF), Arbitrary
Scheduling Algorithm (ASA) and Genetic based
Scheduling Algorithm (GSA). The performances of
scheduling algorithms are tested with parameter
resource utilization. The proposed architecture has
proven to be highly effective in resource
negotiation. Among the three algorithms
implemented, Genetic based Scheduling algorithm
(GSA) was identified best performing scheduling
technique in the Grid architecture for effective
resource utilization.

1. Joshy Joseph., Craig Fellenstein., “Grid
Computing”, IBM Press, (2005).

2. Yaser Nemati., Faramarz Samsami., Mehdi
Nikhkhah., “A Novel Data Replication Policy
in Data Grid”, Australian Journal of Basic
and Applied Sciences, 6:76:76:76:76:7: 339-344, ISSN
1991-8178, (2012).

3. Kuk Hyun Han., Jong-Hwan Kim.,
“Quantum-Inspired Evolutionary Algorithm
for a Class of Combinatorial Optimization”,
IEEE Transactions On Evolutionary
Computation, 6: 66: 66: 66: 66: 6, December (2002).

4. Shaminder Kaur., Amandeep Verma., “An
Efficient Approach to Genetic Algorithm for
Task Scheduling in Cloud Computing
Environment”, I.J. Information Technology
and Computer Science, (2012).

5. Rachhpal Singh., “An Optimization of
Process Scheduling Based on Heuristic
GA”, International Journal of Networking &
Parallel Computing, 1:11:11:11:11:1, (2012).

6. Saeid Abrishami., Mahmoud Naghibzadeh.,
Dick Epema., “Cost-driven Scheduling of
Grid Workflows Using Partial Critical Paths”,
IEEE, (2010).

REFERENCECSREFERENCECSREFERENCECSREFERENCECSREFERENCECS

7. Mustafizur Rahman., Rajiv Ranjan.,
Rajkumar Buyya1., Boualem Benatallah.,
“A taxonomy and survey on autonomic
management of applications in grid
computing environments”, John Wiley &
Sons Ltd, (2011).

8. Ajith Abharam., Fatos Xhafa.,
“Computational models and Heuristic
methods for Grid Scheduling problems”,
Future Generation Computer System,
Elsevier, (2010).

9. Jia Yu., Rajkumar Buyya., “A Taxonomy of
Scientific Workflow Systems for Grid
Computing”, SIGMOD Record, 34:334:334:334:334:3, (2005).

10. Sivakumar. N., Vivekanandan. K., “Measures
for Testing the Reactivity Property of a
Software Agent”, International Journal of
Advanced Research in Artificial Intelligence,
1: 91: 91: 91: 91: 9, (2012).

11. Caddie Shijia Gao., Dongming Xu.,
“Conceptual Modelling And Development
Of An Intelligent Agentassisted Decision
Support System For Anti-Money
Laundering”, Proceedings of the 11th

4 3

Annual Conference of Asia Pacific Decision
Sciences Institute, Hong Kong, (2006).

12. Tavakkoli Moghaddam. R., Shahsavari Pour.
N., Mohammadi Andargoli. H., Abolhasani
Ashkezari. M. H., “Duplicate Genetic
Algorithm for Scheduling a Bi-Objective
Flexible Job Shop Problem”, International
Journal of Research in Industrial
Engineering, 1:21:21:21:21:2, (2012).

13. Xiaowei Yan., Chengqi Zhang., Shichao
Zhang., “Genetic Algorithm-Based Strategy

For Identifying Association Rules Without
Specifying Actual Minimum Support”,
Science Direct Expert Systems with
Application, Elsevier, (2009).

14. Shen Wang, Bian Yang, Xiamu Niu., “A
Secure Steganography Method based on
Genetic Algorithm”, Journal of Information
Hiding and Multimedia Signal Processing,
11111, January (2010).

15. http://people.brunel.ac.uk/~mastjjb/jeb/
info.html.

