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ABSTRACT

The artificial neural networks have been generally based on rate coding in the earliest
stage of computational neuroscience development. What if all the idea of computational paradigm
involving the propagation of continuous data affected straight the enhancing of neural network
performance and the main objective becomes how to encode the data for modeling biological
behavior. The spiking neural networks (SNN) were founded around this concept where not only
the network topology, neuron model and plasticity rule should be defined, but also used the timing
of the spike to encode and compute information. In this paper, we proposed an automatic lipreading
system for spoken digits based on spike response model (SRM). We experimentally demonstrated
the impact of the coding strategy to improve the results by comparing two strategies: Spike time
coding and population coding by using Gaussian receptive fields (GRF); which achieved 75% and
83.33% accuracy, respectively, on Tulips1.0 dataset.

Key words: Spiking Neural Network (SNN), Spike Response Model (SRM), Automatic lipreading,
Spike time coding, Population coding, Gaussian receptive fields (GRF).

INTRODUCTION

Nowadays, all the spiking neuron models
are dedicated to match with the biological realistic
idea. Each model is built to fit with many coding
strategy. The spiking neurons origins are founded
around the limitations and features of previous
existing models. Historically, the formal neuron
proposed by McCulloch and Pitts in' was only a
binary automat modeling the biological behavior
with propagation of a simple binary input and
output data in synchrony mode?. Limited by the
lack of research in the neuroscience, this

representation was still far from its original construct.
In 1963, the publication of Hodgkin and Huxley
works bring an exact mathematical description of
the action potential. Their contribution invited
several subjects of research to describe in details
the dynamics of variations of the ionic current.
However, the reproduction of the neuron activity
specifies to call an excessive number of variables,
which often prevent the comprehension of the
model and makes it difficult to implement. Although,
there works added more realistic part for the
artificial neuron, the concept was practically
abandoned. Thus, a whole new generation of
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neurons was confirmed far from the previous
modeling while basing itself only on the automatic
aspect with analogical and synchronous inputs;
it's called the second generation?.

The work of® reintroduced the return of
biological modeling and opens possibility for
several research proposals. The model is then
called a spiking neuron as third generation of
artificial neuron. Also, the model undermines the
rate coding concept usually used in the previous
generation. The notion of time became an explicit
concept of the model where the propagating data
was introduced as spike trains.

The spiking neural networks (SNN) are
widely used in robotic, speech recognition, image
processing, etc. Their performances start to impose
itself gradually in varied fields. In the speech
recognition, the work of* used the liquid state
machine (LSM) based on spiking model “integrate
and fire” (LIF) by integrating a simulation of ear for
the encoding of information. In the works of%®
introduced various applications on classification,
auto-association and the clustering. More recently
in’, an approach based of spiking neurons able to
achieve microscopic cells segmentation for image
processing.

In our work, we proposed to realize
automatic speech recognition by using the spike
response model (SRM) on one-layered
feedforward construction. In the first section, we
exposed two coding strategy used in our work
which is the aim of our study. In the second section,
we explain the features and the topology of the
chosen SNN for our approach. Then, we describe
a gradient descent algorithm that agreeing with
the used network. Mainly, with one layer, the SNN
received input data determined by spike time
coding strategy or population coding using
multiple overlapping Gaussian receptive fields.

Finally, in the experimental phase, we
used Tulips 1.0 database to compare the results
with work off. With its approach based on the
evolution of the pixels gray level over the
sequences, first, we decided to delimit the number
of pixels. Then, we chose to reduce input neurons
by using six geometric features of opening mouth.

Finally, we expose all the obtained results with our
observations and a comparison with similar work.

Coding strategies

In spiking neural network, each neuron
encodes information. The neural coding is
supposed to identify the link between stimulus and
spike response by modeling spike trains. Several
methods are proposed in literature to solve this
crucial phase''. In our work, we used two
methods to test the data encoding impact on the
enhancing of SNN performance.

Spike time coding

In the spike time coding, each input
neuron describe an assignation of a threshold.
When the action potential reached the threshold,
the neuron will fire at a specific timing otherwise
the firing is marked in different timing. This coding
is confronted by the problem of threshold
initialization but several works demonstrated its
performance’s.

Gaussian receptive fields (GRF)

The population coding method that
encodes an input variable using multiple
overlapping Gaussian receptive fields was
proposed in'. The Gaussian receptive fields are
used to generate (ring times from real values. The
stimulus features are represented by a set of
neurons resulting from projecting input data on a
GREF (see figure.1, below). A range of the data is
calculated from all values of each feature, then
input data is encoded with a population of neurons
that cover the whole data range™’.
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Fig. 1: SNN Input layer with Gaussian Receptive Fields
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Formally, the GRF generate spike trains
from real values. The aim is to encode with a
population of neurons the value of the input feature
i following its range . This population of
neuron acts as a set of m GRF for each input data.
Each GRF neuron is described by a center C, in
(1) and a width o;in (2).
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Fig. 2: The firing time values of GRF1,
GRF2 and GRF3 is illustrated in
time axe for the feature value 1=0,4

The spike train is generated following the
intersection between the input value and Gaussian
graph of GRF (see figure.2, above).

Overview of Spike Response Model

As In this section, we describe the spiking
neuron model used in our work, called the Spike
Response Model (SRM). Initially, the main features
of SRM were presented and described in the work®.
The model is regarded as generalization of the
leaky integrate-and-fire model (LIF). The SRM treats
the input spike train to produce a spike response
using a simple thresholding concept. The feature
of this model lies in the use of a reset kernel
function which allowed to create a short refractory
phase after a spike emission. Thus, the rest function
makes possible to prevent temporarily a neuron to

response, even if the accumulation of incoming
presynaptic spike train is important.

In our work, the SRM used is a model
described in the works of®®'°, In this version, the
connectivity linked each presynaptic and
postsynaptic neurons is delayed as several neural
network model of the second generation''. More
specifically, this unit uses a block of delayed
synapse wﬁ,- to connect presynaptic neuron j with
a postsynaptic neuron j at a delay for each
subsynapse libeled by k. Thus, potential of the
neuron j , noted and describing its state, is
calculated from the formula (3):

U l:fj_z f}(f—lfl I:' ZZZW El:f fl I—d:l (3)

ek kel

The spike is emitted when the potential reaches
the threshold; the time of its emission is noted tff-f’ .
The firing time is crucial information used for
calculation of the potential in posterior moments.
In SRM case, we need to note all firing time of
presynaptic neurons, also, archive firing time from

i ﬁfostsy aptic each neuron. These values take an

p‘B*‘r‘t nt part in the refractory phase through the
function -.

Therefore, the output of the neuron jis
characterized by the set  where firing time is
stored every moment of spike per chronological
order:

Fo={¥1:18 7 <n (4)

Where n is the total number of spikes
emitted by the neuron ;.

In contrast to the refractory effect, usually,
the spike response function p increase the value
of the potential by describing the effect of the
incoming spikes from the set of presynaptic of the
neuron on the potential of post-synaptic neuron.
Many mathematical formulations are possible for
the functions p although the function is generally
seen as a short part of increase followed by a long
shift. We will use equation (5) where the
postsynaptic potential (PSP) is modeled by the
difference between two exponential decays:
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Efs}=lm<p[—fi}exp[—fiﬂff(5} (5)

Where denotes the heavy-side step
function: H(s)=0for s<0 and H(s)=1fors>0.Both
time-constants 7,, andr, (withO<7; <7, ) control
the increasing and the shifting of the function but
more specifically its higher edge.

n(s) = _gexp[_fi]ms;. 6)

Where ¢ the threshold of the neuron, H(s)
represents the function with threshold, and z,
another time-constant.

For the refractory function - in (6), a simple
exponential is used. It is necessary that7(s)=0 for.
When s>0, its value is negative to ensure the
decreasing of the potential. Therefore, it is higher
shortly after the time firing.

SNN approach for an automatic Lipreading

An automatic lipreading method is
generally integrated as visual feature to support a
speech recognition system and enhance their
performance. In our work, we exclusively used this
technique for the isolated word speech recognition.
In this context, the works of booij in [6] used the
spiking neuron networks for an automatic
lipreading system and achieved a recognition rate
of 57% in tulips1.0 test dataset. However, the
coding strategy in this work was based on a
thresholding of gray-level value of pixels.
Therefore, referring to their evolution in the images
sequences, the thresholding method transformed
the analogical entry into binary vector for each
pixel; which is perfectly simplified the input data
coding to a spikes train.

Even if this coding seems logical, the
image size and length of the sequence directly
affects the network parameter. In fact, the number
of input neurons will be important because each
pixel represents an input neuron (i.e: for their
application the image size was 100x75 pixels by
sequence that’s built a network of 7500 input
neurons)

In our approach, we try to optimize the network
topology by using new features based on mouth
shape instead of using image pixel intensity. Then,
we apply two coding strategy: spike time coding
and population coding. Thus, in experiments, we
use the audio-visual tulips 1.0 dataset. The dataset
contains a sequence of images and audio of 12
people pronouncing twice the first four English

” i LTS

numbers: “one”, “two”, “three” and “four”.

f

Fig. 3: Six features of the
mouth in the pronunciation

For the visual data, each sequence is
composed of 6 to 16 images (100x75pixels). More
importantly, the dataset contains the evolving of
six features for each sequence of images, noted
by f; wherei=1.6.

Each feature represents a geometrical distance
illustrated above in figure.3. The feature values
are in this order:

(f1): The width of outer corners of the mouth.

(f2): The height of outer corners of the mouth.
(f3): The width of inner corners of the opening of
the mouth.

(f4): The height of inner corners of the opening of
the mouth.

(f5): The height of upper lip.

(f6): The height of lower lip.

Consequently, the input neurons will be
reduced to six neurons for spike time coding instead
of number of pixels in an image (i.e. 7500 neurons).
For population coding, the six features is coded in
a group of neurons, so the input layer depends on
the number of receptive fields. This reduction of
parameters can even optimize the SNN training in
terms of time and performance.
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Network Topology and coding strategy

In our work, the SNN architecture consists
in feedforward network with one layer based on
the spike response model. The input data coding
is operated by two methods: spike time coding and
population coding by Gaussian receptive field. This
choice seems ideal considered that the extracted
distances of images are real values varying in an
interval determined by the opening and size of the
mouth.

In the first information encoding, the input
layer is composed of six neurons with fixed
threshold, the input neuron fire only if its assignation
at the sequence is higher than a predefined
threshold. However, in the second one, the number
of the six input neurons is multiplied by the number
of receptive fields. Since, all the spoken digits
features evolved over 6 to 16 sequences; the input
values is the summation of the same feature
according its evolution before applying receptive
fields.

The output layer is composed of 4 output
neurons depicting the class of the pronounced word
(“one”, “two”, “three” and “four”). The spike train of
output neuron contains 20 delays. The attribution
of an example to a class is done by comparing the
first spike-time. The winning neuron is the one

which emitted before the others.

SNNTraining

The spiking neural networks are able, by
definition, to receive and treat an input spike train
to emit another output spike train. By analogy with
the conventional versions, the plasticity rule
defined the enhancing of the training. The
unsupervised training is usually shown more
performance in SNN case. For our application, the
classes are already defined by labeled sequences
for each spoken isolated words wherefore we use
the supervised training. We are taking as a starting
point the work of%'°, the learning rule used is a
gradient descent algorithm. Formally, the objective
is to determine the synaptic weights of the spiking
neuron network without hidden layer. Therefore, in
order to minimize the error function, all the delayed
synapses are modified. This minimization is
achieved by gradient descent rule while
decreasing proportionally the error function by its

derivative. The error value is a very important stage
for the learning algorithms. So, in our case, error
measurement is determined by the difference
between the desired and calculated spike-time of
output neurons. That's why it is so important to
choose the appropriated coding when we build
the SNN because the firing times are the only
information returned from an output neuron.

So, we used a learning rule which is
inspired by SpikeProp method except that the
coding takes into account the first spike :\” and is
unaware of all the spikes which come afterwards.
The error value can be given by the sum of the
differences between desired and obtained time-
to-first-spike output:

!

S
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Where 1" is the desired time-to-first-spike
of neuron j and represents the output neuron.
In order to minimize the error of the network, we

(proportionally change each weight with derived
Jfrom the error with respecting this weight. The
modification of the synapse weight goes from the
neuron i to the neuron is then noted by:

O,

Het

g

Ao = -n

g

Where - is a small value constancy
determining the learning rate and  is the synaptic
weight which goes from the input neuron to ;i the
output neuron  with a delay

The synaptic weight influences only
spikes delays of the output neuron, we can extend
the second factor of the equation (7) to:

wet

3E,, am,, 3!
E o0 & ...(9)
awt Al awh

The first factor, which expresses the error
variation of the network according to the time-to-
first-spike of the output neuron j, is given by:
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Obtaining the second factor of the formula
(9), which expresses the change of spike delay by
report with the modified weight, is more difficult,
because it does not have their formula to express
that. Several successive formulas by replacement
of the factors allow this type of calculation, and the
following formula is proposed as:

all X, -0 -d)
W, T T, meE a1

Finally, the formula which expresses the
change of the weight concretely as follows:

ot = ___._E_:_,:"’(""‘r_"'—rf-'] |’
P J?z_ I_.:Z.I:w"_.r'[!'l- T )l.\

o l(12)
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Hence, with the definition of the factors:
topology, coding strategy and learning algorithm,
we can pass to the experimental phase.

EXPERIMENTAL

In this section, we experiment our SNN
which performs the spoken isolated words
recognition based on visual data with six
geometrical distances of mouth, by tracking their
evolutions in each sequence. For achieving our
experiments, we divided the database into two
sets: a training set and a generalization set. The
training set consist 6 individuals each one
pronounce the four numbers with two recoveries,
therefore, we reserved 48 example of training set.
The test set contains all 48 vectors remain
pronounced by different individuals.

However, we were interested in the
information coding proposed in booij’s work. We
tried to take again his experiment by reducing the
input of 7500 neurons related to the size of the
image (100x75 pixels) to 2100 neurons determined
by a framework size of 60x35 pixels. We specifically

localized and extracted the mouth framework from
the sequences. Our aims were the elimination of
impertinent data. With this approach, after several
experiments, we noticed no improvement of the
results compared with those obtained by booij. The
rate of test always varies between 41% and 46%.
Naturally, the training time and generalization time
decreases slightly but we detected no utility to
reduce the number of neurons in entry with their
coding strategy.

So, we launch several times the SNN
training with an architecture of six input neurons
with the two coding strategy as describe previously.
The advantage of this network was the limited size
of network parameters which allows a fast
propagation of the input data. Consequently,
comparing with the previous experience, the
learning phase was widely reduced. In All
experiences, after trying several values between
102 and 107, the selected learning rate - was equal
of 10°.

For spike time coding, the generalization
demonstrates a recognition rate between 64,58%
and 75%. In the table.1, we present the results of
generalization given by SNN selected previously.
The input-neurons thresholds were randomly
chosen by observing the data range. In fact, this
thresholds initialization was the main inconvenient
of the coding stage.

TIBR 19PHL P 004RIRRH fateB GpulatioN

SNN with spike time coding

Number  Number of Recognition
of occurrence rate (%)
occurrence classified correctly
“one” 12 12 100
“two” 12 8 66,66
“three” 12 9 75
“four” 12 7 58,33
Total 48 36 75

coding denoted in figure.4 demonstrated the
performance of this method where the rates are
between 68,75% and 83.33% when the receptive
fields varied between 1 and 9.
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We observed that the accuracy rate
increased starting from seven Gaussian receptive
fields before stabilizing with increasing the GFR
value.
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Fig. 4: Evolution of recognition rate with
varying number of Gaussian receptive fields

The Table.2 illustrates the pattern in
classification accuracy rates. The results showed
that the pattern “one” and “two” were correctly
classified.

Table 2: The recognition rate
of SNN with population coding

Number  Number of Recognition
of occurrence rate (%)
occurrence classified correctly
“one” 12 12 100
“two” 12 12 100
“three” 12 10 83,33
“four” 12 6 50
Total 48 36 83,33

The experimental phase revealed few
gaps in the gradient descent Algorithm for each
method. We noticed in almost all the launched
trainings a divergence and a considerable
instability during the minimization of the error. For
SNN based on spike response model, we can say
that it is enough to change coding strategy to
improve the rate of generalization between 20%
and 30%.
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Fig. 5: Comparing recognition rate
by applying the SNN approach
and SVM with polynomial kernel

For comparing our SNN approach with
other methods, we decided to apply support vector
machine classifier (SVM). In our experimentation,
we tried several kernel functions of the SVM model
with two strategies: one-against-one and one-
against-all method. The accuracy rates was
between 68,75% and 87,5%. The best SVM
performance was scored with polynomial kernel
which was the only model that enhanced the
results comparing our SNN approach. The figure.5
illustrates the recognition rates of one-against-one
and one-against-all method which achieved,
respectively, 84,38% and 87,5% accuracy rate.

In literature, other works, the researches
focused on the definition of the viseme classes to
obtain the phonetic transcriptions. The work'
achieved 92,7% accuracy using Multimodal
Sensor Fusion Architecture in Tulips 1.0 dataset.
In the work of®, by using this network with the same
database, the results had not exceeded the 57%
in the generalization phase. For example, the
hidden Markov model (HMM) tested on AVICAR
database give rate recognition equal of 50% using
the pattern extracts from the image'2. More recently,
a variant of the HMM, called Ergodic HMM'3,
provided 66.83% of rate recognition. This
application was tested on the Mugshot database
and combines with the image pattern. Lastly, SVMs
tested on the images of AV database letters. Their
result was equal to 62.80%".
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CONCLUSION

Finally, the obtained accuracy rate of our
SNN approach was promising results in a small-
scale study. Furthermore, we demonstrated that
spike time coding is found to give the least reliable
results compared to the neural coding using
Gaussian receptive fields. We conclude that coding
strategy is an important factor to design the spiking
neural network. Consequently, even if the topology

and learning algorithm are the main problem to
plan in neural network, the coding strategy remains
always crucial phase to enhance the network
performance. Unfortunately, there is no way to
define the appropriated coding. Even if the coding
method seems to be the most logical process, only
the generalization will determine its efficiency. In
fact, the coding strategy adds to the neuron network
a new Constraint of initialization.
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