
ORIENTAL JOURNAL OF
COMPUTER SCIENCE & TECHNOLOGY

www.computerscijournal.org

ISSN: 0974-6471
December 2013,

Vol. 6, No. (4):
Pgs. 421-427

An International Open Free Access, Peer Reviewed Research Journal
Published By: Oriental Scientific Publishing Co., India.

Introduction

	 XML documents have a tree structure
called DOM. On the other hand, languages,
which are used to respond queries, have a textual
structure. Therefore, this structure conversion is

Providing a Method Based on the Path
Indexes in Optimizing XML Queries

Noshin azimI and Shahla kiani

Department of Computer Engineering, Khorasgan University of Technology, Esfahan, Iran.

(Received: October 25, 2013; Accepted: November 15, 2013)

Abstract

	 In this paper, initially, the description and the processing way of the existing queries and
languages in this field is performed and a base is graded for the new method by classifying the
present methods and evaluating on strengths and weaknesses of each method. This three-step
approach is proposed to improve previous methods. The method involves three steps:
1.	 First step:	 Simplifying query and reducing the searching area.
2.	 Second step:	 Producing a result table as a guide for the query processor.
3.	 Third step:	 Processing the document nodes according to the guide table produced in
		 the previous step.
	 This three-step method can prove its ability compared to the previous methods. The method
is developed so that it has the efficiency for complicated multi-branches queries. Then, it is tried to
optimize the method, considering the concept of the extraction points. During the three steps, useless
nodes – the nodes that either do not make a response for the user, or return a repetitive one – were
used so much; using such nodes is reduced by introducing an index called level index.

Key words: Path index, Node, Query optimization, TPQ.

necessary. In continuance, because of not requiring
to be related to a special language, we define a
structure called Tree Pattern Query. Fortunately, all
query languages in XML are simply convertible to
TPQ.

D

*
B

A

422 azimI & kiani, Orient. J. Comp. Sci. & Technol., Vol. 6(4), 421-427 (2013)

	 TPQ is a Tree Structure for XML queries.
The tree nodes are composed of query tags and
its mainscontain the linkages //, /, ? and *, so that
for each element a and b with the linkage c, we can
find a mane in TPQ that its nodes are a and b and
its kind of mane, c.

	 Following on, we will explain the way to
convert this XPath to TPQ with an example.

Example: Q1://A[./B]/*//D

	 In this query, A,B and D mean the tags we
are looking for in the document. // means (Ancestor
– Descendant) relation, / means (Parent – Child)
relation and * is the name of the arbitrary tag. Now,
TPQ can be depicted corresponding with the above
query easily.

	 Now after being able to convert queries
structures to the tree structure like the document,
we can look for all tree models that match TPQ. For
example if we want to perform the above queries on
the below document, one of the attained models is
< A2, B1, D1 >.

Reviewing the previous methods.
Nested Loop Method
	 As stated in the previous part, a document
is shown as a set of nodes and in the form of a
tree. On the other hand, all query languages in
XML require the match between query nodes and
document. For example suppose we export the
following query:

BOOK//title
	 It means we want all titles of the books. In
this method, we firstly find all the books and then
we test for each node if it has a child called title.
This is the first method which is applied.
As it is clear, this method has many basic difficulties
that we refer to two main cases which make it non-
establishable for large documents:

	 In this method, a loop should be performed
for each node. For example, if we want to perform
the query, a/b//c/d, we will require 4 complex loops,
so the time complexity of this method is O(n2), where
n is the number of query nodes.

	 In this method, the number of the produced
intermediate results is so much, and in addition to
wasting time for processing these useless nodes,
we will require a very large memory to hold these
nodes.

Structural Join Method
	 In this method, at first, all complex relations
of the nodes are achieved. For example, the query,
a//b/c//d is converted into the three relations,
a//b, b/c and c//d; then each query is performed
separately, and finally, the results are integrated
altogether. We will explain the way of achieving one
of the binary queries as follows. Note to the query,
Book//Title. In this method, we will make two lists,
for these two groups, one for the book and another
for the title separately. Now, we compare all title
nodes with all book nodes. We will return every pairs
of nodes which have an Ancestor – Descendant
relation between them as the response. This is
called Join in database world.

This method has two general difficulty:
1.	 In this method, we have to divide the main

query, which has a few responses into
a large number of binary queries, which
each one returns a large number of the
responses.

2.	 This method returns a large content of the
intermediate results that a general content of
the results will not be of the final result. Thus,
producing and holding of these intermediate
results make the response time to the main
query longer.

	 Since this method breaks all queries to
binary relations, we will need n-1 binary query
and also m=(n-1)/2 integration for a query with n

Fig. 1: Compare two lists to understand
the relation ships between nodes

423azimI & kiani, Orient. J. Comp. Sci. & Technol., Vol. 6(4), 421-427 (2013)

member in the first step. So in general state, the
time complexity of O(m(2+2(n-2))) for this query will
be just in the first step. In later steps, the gained
results is half on average. Since the first step of this
method is the most time-taker step, we stated this
step complexity as the method complexity.

	 Many of the studies on the above method
have been done to increase efficiency and decrease
time respond. For example, some papers have
performed indexing two comparable lists, using
the methods +B or +R. on the other hand, some
methods compare the two lists as optimum, that
means unrelated elements are not compared to a
possible extent.

Staircase Method
	 There is another familiar and useful
method, that is Staircase Join. This method works
as the previous method to some extent. In this
method, the tree, firstly is surveyed in two forms
of prefix and suffix. For example, below there is a
piece of a tree with its numbering.

and down side of this node. So, in the best state,
the tome complexity of this method is 1/4 of the
previous method complexity. Most of the methods
such as [1] try to increase the efficiency of this
method with loping the above method. In addition
not to be optimum, all the stated methods have
other problems such as replacement of the nodes
situations or impossibility of updating, optimization,
algebraic displaying and so on.

Fig. 2: The prefix and suffix numbering

	 Now we write the tree with the new
numbering to the two- dimensional space, so that
the proper nodes are placed in each systemic node.
For example, at the right and down side, Children
and at the left and up side, Ancestor nodes of a
node are placed. For instance, note to the situation
of the node g in the tree and the diagram.

	 Now, we limit our seeking area to one of
the four sides with this method. For example, in the
previous query, Title seeking area was limited just
to the children of a Book which were at the right

Fig. 3: The next node in the upper and right,
the previous node in the bottom and left

Holistic Twig Join
	 Another method which is in [15, 16, 17] has
attained more acceptance rather than its previous
methods; this method name is twig join Holistic.
This method numbers the tree as an area like
structural joint, then saves all the same nodes with
each query element in separate stacks. At every
moment, it tests if it can make a sample of TPQ.
Two remarkable and different methods to find the
relationship between stacks elements are Twig and
Stack.

	 This method has this advantage rather
than previous methods that there isn’t a requirement
to analyze a query to a number of binary queries,

Fig. 4: Holistic Twig Join method

424 azimI & kiani, Orient. J. Comp. Sci. & Technol., Vol. 6(4), 421-427 (2013)

so the number of intermediate results which are
produced are much fewer. Since each list in this
method is surveyed just once, time complexity of
this method equals to O(Max(n1, n2, …, nm)). n
means query nodes.

	 But one of the method problems rather
than the later methods is to make all query nodes
accessible in the real document. For example if
we want to perform the query a/b/c, requirement
to all sample of this node will be real. Thus we
will encounter the problem of the high content of
conceptual intermediate nodes (Figure 2.6).
But this method took many researchers’ attention,
and a lot of studies were done for increasing its
efficiency. For example, in [16], it tries to accelerate
this method by indexing internal nodes in a B+Tree,
or in [17], an index called XR_Tree was invented
for this purpose. In [18], it’s been tried to decrease
the number of required nodes by making changes
on primitive algorithm. Today, this method is one of
the useful ones, and even it could be said in some
cases that it works better than its later methods, in
special conditions.

TJFast Method
	 All previous methods had to achieve
all existent nodes in document for responding to
queries. But in [56], by giving a method called
TJFast, it proved that just by achieving query leaf
nodes, it could get the response. For example, to
respond the query Q1, we will just need to achieve
Book and Title leaf nodes.

STUDENT//BOOK[TITLE=’XML’];
	 This method numbers the tree as decimal
or Dewey encoding19,20, lets take a look at the
encoding method at first.

	 Using the encoding method, we will be able
to produce a graphic called FST. This atamata can

simply show the way of numbering the document.
Using this atamata, encoding and decoding will
be establishable. For example, by using of this
atamata, it firstly encodes internal nodes, and
then compares them to get the response. TJFast
only compares query leaf nodes, so the number
of accessible nodes in this method is much fewer
than the similar one. For example, for a query of n
branches with m members where n<<m, we will
just need to test n members. As a result, the time
complexity of this method could be written O(m).
But on the other hand, the method has the following
main problems:

	 In many cases, the time and content of
FST is remarkable, and using it is uneconomic.

	 TJFast spends a lot of time to encode the
nodes, and in a case, this causes the total time to
be more than of the similar methods.

The Methods Based on Path Indexes
	 All the methods stated before are known
as Containment join in XML world. This group of
the methods applies an index called name index.
The name indexes action is quick achieving to
the elements with namesake tags. Consider the
following query as an instance:

STUDENT//BOOK[TITLE=’XML’];
	 This index makes all Student, Book and
Title nodes immediately available for algorithm for
this query. For example, it keeps all the Book nodes
in one array and processes them respectfully.
There is a main problem within all the above
methods. This group of the methods regardless
of the elements location, look for a way to binary
compare of the nodes optimally; they try to get the
query respond directly by these comparisons, while
most of them attain no respond of the query.

	 The way that this group applies to
respond queries is that at first, they compare
the structural relation of (a – c or a – d) among
queries with structural Summary, or in better words,
they performs the query on SS firstly, then return
Extend, the branches nodes which match with
query as query respond. The primary algorithm of
IT production for a two-branch query is as follows.
This is a primary quasi code and it’s just for two-

Fig. 5: TJ Fast numbering method

425azimI & kiani, Orient. J. Comp. Sci. & Technol., Vol. 6(4), 421-427 (2013)

branch queries. The algorithm for complex queries
is as follows.

Input: Q as TPQ
Output: IT as Index_Table
 1: Let A and B the two leaves of Q
A and B are two query leaf node.
2: Let JP = Joint point between A and B
The connection point shows two-branch connection
node.
3: Let AL = list of SS nodes match A branch
4: Let BL = list of SS nodes match B branch
A and B are identified by Extend nodes of the lists,
AL and BL, respectfully. These nodes are the same
found leaf nodes for each query branch.
5: for each an ∈ AL do
6: for each bn∈ BL do
7:	 for each JP1 in an , JP2inbn do
8: if an.Prefix(JP1) = bn.prefix(JP2)
then
9: IT.addREC(an, bn, JP1.level))
10: end if
11:	 end for
12: end for
13: end for

	 The final results is made regarding the
results table. Each record of this table guides the
query processor to get a piece of the respond. The
collection of these pieces produces the final result.
Therefore, the final result is the collection of the
returned results by each record.

The jumps over the nodes not participated in
the final result
	 The nodes which are not participated in the
final result are counted as usefulness conceptual
nodes, and should be jumped over them. Note to the
lines, 11 and 13 of the quasi code which has come
for the final result production. These two lines are
for the nodes group which haven’t had a successful
corresponding action, and the pointer should goes
on the next node. But what node is the next one?

	 The state Next in these two lines makes
sequential processing among the elements. It
means the elements are achieved by the pointer
respectfully. But this node can’t have a successful
correspondence since most of the nodes has a
same prefix with their previous element, and if

the previous element doesn’t have a successful
correspondence.

	 We need to jump for the elements which
don’t have a successful correspondence. The jump
should be done over all the elements which have a
same prefix to the connection point level.

Jump
	 if the node A is with the number a1/a2/…/
aj/…/an and we want to have a jump in the level J,
the next node will be B, if B is the smallest node
which is larger than A and has a dissimilar prefix
to the level J with the node A.

	 The Use of the Index Table on Indexed
Leaves
As observed, we need an index that allows jumping
from one node to another in a desirable level L.
Here, we provide a primary multi list plot, and then
complete level index plot for this kind of jumps.
But before doing so, we consider two concepts of
Jump and Level that are used a lot. Notice that the
Extends of each group of SS, the query leaves in
document, are indexed separately, because these
nodes are considered as quasi code internals in
the figure.

	 Multi list is a multiplet index for each level
of ordered leaf nodes with level L, so that its highest
level L-2 is assumed a root with Dewey of code1,
and its lowest level will be L-1. Each list of ML with
the level Li has the prefix of all the list nodes Li+1
to the level Li. Each node of ei in a list with the level
ihas a pointer to the first leaf node beginning with
ei.

	 One of the biggest problems of this method
that makes it none-establishable is effluence in
updating, deletion and interpolation. In the worst
state, a deletion (interpolation) can enter the
indexes of all levels.

	 Example: If we want to interpolate the node
1.1.4.1 to the leaves, we have to add 4.1 to the list
of level 2 and 1.4.1 to the list of level 3.

	 JUMP: The Jump quasi code in LBI is
shown in the figure. Below, we explain its lines with
example.

426 azimI & kiani, Orient. J. Comp. Sci. & Technol., Vol. 6(4), 421-427 (2013)

	 If it’s required to jump in the L2, from the
current node N in the level L1 of index, if L1<L2, we
should do a deep survey toward the level L (Line 2
and 3).

Example
	 The following figure shows a piece of a
LBI. The root of the tree a is the level 1. The current
node b is with the level 2; and we want to have a
jump in the level 4. The order of the next accessible
nodes is as c, d, e, …

	 If L2<L1, the first homo-ancestor node is
next to the ancestor N in the level L2 (The lines 4
and 5).

Pseudo-code of determination level jump

Fig. 6(a): piece of a levelindex

this state, it is said that the fatness of the tree has
occurred in the lower levels that makes the nodes
content in LBI to be more in the lower level, so
when we evaluate a node in upper levels, if it has a
successful correspondence process, we have found
many respond nodes just by one comparing; and
if it has an unsuccessful correspondence process,
we will jump over many sets of useless nodes.

	 Considering the above diagrams, LBI
index doesn’t act similarly, and its usage is not equal
in all cases. But considering the above diagrams,
the best and the worst states of the appliance could
be stated as follows:

	 The best form of the tree:When Dewey
number of internal nodes is near one another, (for
example, the numbers such as 1/2/2/1/2, 1/2/2/1/1,
1/2/2/2/1, 1/2/2/2/3) or in other words, the nodes
have similar prefixes to the lower levels of their
Dewey, figure LBI will be like the figure below. In

Fig. 7: The best form ofLBI

	 The worst form of the tree: when the
interval among internal nodes in the real tree is high,
it makes the nodes to have shorter quasi prefixes
(for instance Dewey numbers such as 1/1/2/3/4 and
1/2/4/2), so the nodes gathering will be happened
in higher levels of L1, and it’s said that the fatness
of the tree exists in the head and the waist of the
tree. Notice the following figure as an instance. In
this state, our jumps are so little, so we may have
more I/Q rather than the state that our internals are
read respectfully.

Fig. 8: The worst form ofLBI

	 For example, if you look at the red flashes,
you will see that 5 node is read (that each can
produce one I/Q), and jumping is just over one node
(the blue node).

.......

427azimI & kiani, Orient. J. Comp. Sci. & Technol., Vol. 6(4), 421-427 (2013)

REFERENCES

1.	 Ramanan P. “Holistic Join for Generalized
Tree Patterns “ , Information Systems, 32(7):
1018-1036 (2010). ELSEVIER.

2.	 Kaushik. R., Bohannon. P., Naughton J. and
Korth. H, Covering Indexes for Branching
Path Queries, In Proc. 11rd SIGMOD
Conference: 133 – 144 (2008)

3.	 Kaushik. R., Krishnamurthy. R., Naughton. J.,
and Ramakrishnan. R. On the integration of
structure indexes and inverted lists, In Proc
SIGMOD Conference: 779 - 790 (2009)

4.	 Goldman. R., Widom. J. DataGuides:
“Enabl ing Quer y For mula t ion and
Optimization in Semistructured Databases.”,
In Proc. 23rd VLDB Conference: 436—445
(2011)

5.	 Nestorov S., Ullman J., Wiener J., and
Chawathe S., Representative Objects :”
Concise Representations of Semi structured,
Hierarchical Data “,In Proc. ICDE: 79-90
(1997)

6.	 Chung, C., Min, J., Shim, K. Apex:” An
adaptive path index for xml data.”, In Proc
ACM Conference on Management of Data
SIGMOD: 121 - 132 (2005)

7.	 Cooper. B., Sample. N., Franklin. M.,
Hjaltason. G.,Shadmon. M. A Fast Index
for Semistructed Data, In Proc. 14th VLDB
conference: 341 -350 (2006).

8.	 R. Kaushik, P. Shenoy, P. Bohannon, and
E. Gudes.”Exploiting Local Similarity for

Indexing Paths in Graph-Structured Data”.
In IEEE/ICDE, pages 129-140, San Jose,
California (2010).

9.	 Al-Khalifa.S., Jagadish. H.V., Koudas.N.,
Patel. J.M., Srivastava. D., Wu. Y. Structural
Joins:”A Primitive for Efficient XML Query
Pattern Matching.”, In Proc. ICDE: 141-152
(2011)

10.	 Chien. Et. “Efficient Structural Joins on
Indexed XML “,In Proc. VLDB Conference
(2011)

11.	 Jiang.H.,Wang.W, Lu. H, and Xu Yu,
J, anChin. B, XR-Tree: “Indexing XML Data
forEfficient Structural Joins. “,In Proc. ICDE
Conference :253-264 (2008)

12.	 Mathis. C., Härder. T, Haustein. M. “Locking-
Aware Structural Join Operators for
XMLQuery Processing”, In Proc SIGMOD
Conference: 467 - 478 (2008)

13.	 Wu. Y., Patel. M. J. and Jagadish. H. V.
“Structural join order selection for XML query
optimization”, In Proc. VLDB Conference,
(2012)

14.	 Kaushik. R., Krishnamurthy. R., Naughton. J.,
and Ramakrishnan. R. On the integration of
structure indexes and inverted lists, In Proc
SIGMOD Conference: 779 - 790 (2009)

15.	 E. Damiani, S. De Capitani di Vimercati, S.
Paraboschi, and P. Samarati “A Fine-Grained
Access Control System for XML Documents”.
ACM TISSEC, 169-202, (2010).

