ORIENTAL JOURNAL OF
ISSN: 0974-6471 COMPUTER SCIENCE \& TECHNOLOGY
An International Open Free Access, Peer Reviewed Research Journal Published By: Oriental Scientific Publishing Co., India.

March 2013,
Vol. 6, No. (1):
www.computerscijournal.org

Generation and Analysis of the Random Numbers by GCC Compiler

SAKSHAM SRIVASTAVA
Department of Computer Engineering, Malaviya National Institute of Technology, Jaipur, India.

(Received: February 14, 2013; Accepted: February 27, 2013)

Abstract

The random numbers have been generated by the GCC compiler and tested for their randomness. The code used by the library function of GCC compiler to generate random numbers is also presented. Chi-square test, Runs test below and above median, and Reverse arrangement test have been conducted to test the randomness. It has been shown that the Random numbers generated by GCC compiler have successfully passed these tests.

Key words: Random numbers, GCC compiler, Chi-square Test, rand() function, randomness.

INTRODUCTION

A random number is a number generated by certain process, whose outcome is unpredictable. Random numbers are required to be independent, so that there is no correlation between successive numbers. Random numbers are subject to intensive investigation due to their application in simulation of random numbers, statistical sampling, cryptography, computer programming, numerical analysis, decision making and recreation ${ }^{1-2}$.

All the sources of random numbers behave in the same way, and some are better than others for different applications. The tests are usually conducted by empirical tests and theoretical tests. Empirical tests are conducted on the sequence generated by a Random Number Generator (RNG), and require no knowledge of
how the RNG produces the sequence. Theoretical tests are better and require a knowledge of the structure of the RNG.

Computer-generated random numbers are referred as "pseudo random" numbers, on the other hand random numbers generated by physical processes are called "true random" numbers Many algorithms have been developed to generate random numbers ${ }^{3-4}$ and also many tests to check their randomness. Commonly used pseudo random number generators are Linear Congruential generator, Blum Blum Shub and Lagged Fibonacci Generator. Most random number generators require an initial number called seed as a starting value. True random numbers are generated by flipping coins, rolling dice, keyboard latency, atmospheric noise picked up by a radio receiver, decay of radioactive materials and by the motions of lava lamps.

Among all the random number generators, the method used by the library function of GCC to generate random numbers is Linear Congruential generator.

Linear Congruential Method for generation of Random numbers

Linear congruential method ${ }^{1}$ was originally proposed by Lehmer in 1948, but reported by Knuth in 1951. It generates the sequence of random numbers by the following formula:

$$
Y_{i}=\left(a * Y_{i-1}+c\right) \% m
$$

where Y_{i} is the $i_{\text {th }}$ term of the sequence and $\mathrm{m} \leq 0,0 \leq \mathrm{a}<\mathrm{m}, 0 \leq \mathrm{c}<\mathrm{m}$ and $0 \mathrm{~d}^{\prime \prime} \mathrm{Y}_{0}$ (seed) $<\mathrm{m}$

For example if $a=2, c=3, m=7$, seed $=1$, then the sequence generated by Linear Congruential generator is: $5,6,1,5,6,1 \ldots \ldots \ldots$.

Here, the sequence gets repeated after an interval called the period of the sequence. Therefore constants a, c, m should be chosen carefully for getting a good generator.

Random number generated by GCC compiler
The GCC compiler has an inbuilt library function rand() for generating random numbers based on the non-additive feedback ${ }^{5}$. The GCC compiler uses srand() function to initialise the random function by passing a seed as its argument. Mathematically, exact algorithm used by the rand() of GCC library to generate random numbers with a seed ' s ' is given below.
The sequence with $i_{t h}$ term denoted by R_{i} can be calculated as:

$$
\begin{aligned}
& R_{0}=s \\
& R_{i}=\left(16807 * \quad \text { (signed int) } R_{i-1}\right) \text { mod } \\
& 2147483647 \quad \text { (for } 1 \leq i \leq 30) \\
& R_{i \cdot}=R_{i-31}(\text { for } 31 \leq i \leq 33) \\
& R_{i}=\left(R_{i-3}+R_{i-31}\right) \bmod 4294967296 \text { (for } \\
& i e \leq 34)
\end{aligned}
$$

where $2147483647=2^{31}-1$ and $4294967296=2^{32}$

The first 343 terms of this sequence are ignored, and the first term obtained by the rand()
function is equal to the $344^{\text {th }}$ term of this sequence. If the i_{th} term obtained by rand() function be denoted by X_{i}, then:

$$
\mathrm{X}_{\mathrm{i}}=R_{i+344} \gg 1
$$

It is a 31-bit number and the least significant bit of R_{i+344} has been ignored. The multiplication by 16807 is done in a large signed integer type so that there is no overflow before the modulo operation. Further R_{i-1} is converted to a signed 32-bit value before the multiplication. Value obtained can only be negative in the case of $i=1$, if $s \leq 2^{31}$. The modulo operation is mathematical and result obtained is in between 0 and 2147483646. Almost linear output sequence is obtained even after ignoring the least significant bit.

The C code for generating the random numbers same as that generated by rand() can be written as:
\#include <stdio.h>
\#define MAX 1000
\#define seed 1
int main() \{
int r[MAX],i;
$\mathrm{r}[0]=$ seed;
for ($\mathrm{i}=1 ; \mathrm{i}<31 ; \mathrm{i}++$) \{
$r[i]=(16807 L L * r[i-1]) \% 2147483647$;
if $(r[i]<0)\{$
$\mathrm{r}[\mathrm{i}]+=2147483647$;
\}
\}
for (i=31; $\mathrm{i}<34$; $\mathrm{i}++$) $\{$
$r[i]=r[i-31]$;
\}
for ($\mathrm{i}=34$; $\mathrm{i}<344$; $\mathrm{i}++$) $\{$
$r[i]=r[i-31]+r[i-3] ;$
\}
for (i=344; i<MAX; i++) \{
$r[i]=r[i-31]+r[i-3] ;$
printf("\%dln",((unsigned int)r[i]) >> 1);
\}
return 0;
\}
The terms X_{i} generated by the above algorithm using seed 1 , are same as generated by the rand() function of GCC and are recorded in Table 1.

Table 1: X_{i} generated by the above C code

\mathbf{i}	$\mathbf{X}_{\mathbf{i}}$	\mathbf{i}	$\mathbf{X}_{\mathbf{i}}$	\mathbf{i}	$\mathbf{X}_{\mathbf{i}}$
1	1804289383	20	1303455736	30	468703135
2	846930886	21	35005211	50	2038664370
3	1681692777	22	521595368	75	1998898814
4	1714636915	23	294702567	100	1956297539
5	1957747793	24	1726956429	200	1784639529
6	424238335	25	336465782	300	1176911340
7	719885386	26	861021530	500	1081174232
8	1649760492	27	278722862	600	553160358
9	596516649	28	233665123	800	1981208324
10	1189641421	29	2145174067	1000	1143565421

The various different sequences can be generated by giving different initialising seed values each time to rand() of GCC. The varying seed value can be obtained by using time() function present in the time.h header file of GCC library to initialise the random function. It returns the number of seconds passed from January 1, 1970 till the current time. The GCC Library function time() can be used with srand() as follows: srand(time(NULL)) The rand() can be used to obtain numbers in any certain range by a slight modification. E.g. numbers between 0 to m can be obtained by using modulo $(m+1)$ with the rand(). The rand() can further be modified to obtain negative values by subtracting appropriate number after modulo operation. The following C code has been used to generate first 1000 terms with values between 0-999 by rand()
the randomness test, and some of the generated terms are mentioned in Table 2.

```
```

\#include<stdio.h>

```
```

\#include<stdio.h>
\#define seed 1
\#define seed 1
\#define MAX 1000
\#define MAX 1000
int main()
int main()
{
{
int i,r[MAX];
int i,r[MAX];
srand(seed);
srand(seed);
for(i=0;i<MAX;i++)
for(i=0;i<MAX;i++)
{
{
r[i] = rand()%1000;
r[i] = rand()%1000;
printf("%d\n",r[i]);
printf("%d\n",r[i]);
}
}
return 0;
return 0;
}

```
```

}

```
```

Table 2: T_{i} generated by the above C code

i	$\mathrm{~T}_{\mathrm{i}}$	i	T_{i}	i	T_{i}
1	383	15	763	100	539
2	886	20	736	200	529
3	777	25	782	300	340
4	915	30	135	400	868
5	793	40	42	500	232
6	335	50	370	600	358
7	386	60	281	700	775
8	492	70	857	800	324
9	649	80	750	900	587
10	421	90	399	1000	421

Statistical Overview of the data

The statistical overview of the data obtained from rand() of GCC compiler has been calculated by taking different seeds from 1 to 10 . The parameter includes mean, median, maximum value, minimum value, probability of occurrence
of even numbers, number of duplicate entries and non-occurring numbers in the data set. The summary statistics for the first 1000 random numbers obtained from rand() of GCC compiler are recorded in Table 3.

Table 3: Statistical overview of the data from rand()

Seed	Mean	Median	Max	Min	P(Even)	No of Duplications	No of non- Occurring Values
1	499.495	497	999	0	.507	268	362
2	494.843	494.5	999	1	.471	257	367
3	504.442	496	998	2	.512	259	358
4	493.549	494	998	0	.511	258	370
5	489.946	488	999	0	.480	263	369
6	512.263	531.5	999	2	.495	266	371
7	500.201	505	999	1	.489	260	365
8	511.306	519.5	998	9	.506	266	390
9	508.331	510	998	1	.475	258	358
10	504.028	523.5	999	0	.476	270	372

Analysis of data

There are many techniques used for analysing randomness of the sequence. Out of these three have been taken for visual analysis of the randomness and are graphical in nature. Random numbers obtained by GCC compiler by taking seed one will be used for analysis.

The Run Sequence Plot

Run sequence plot is a graph of each observation against the random numbers in the sequence. Figure 1 is the run sequence plot of 1000 numbers obtained from rand() of GCC compiler which shows a random pattern. The plot fluctuates around 500, the expected mean of the numbers, and these fluctuations appear random.

Run Sequence Plot
Fig. 1: Run sequence plot of random numbers obtained by rand()

Lag plot

Lag plot is an interesting graph for detecting outliers. If there are chance outliers or significant outliers, this indicates that there may
be something wrong with the generator. Figure 2 shows no outliers and the data points are spread evenly across the whole plain. This is a good indication of randomness.

Fig. 2: Lag plot of random numbers (T_{i} against $\mathrm{T}_{\mathrm{i}-1}$)

The Histogram

The histogram plot is the count of observations that occur in each subgroup. The expected number of observations would be same
in each category. In Figure 3 the random numbers are divided into 20 categories with 50 observations in each, which confirms property of uniformity.

Fig. 3: Histogram of rand()

Theoretical test of randomness

The following three tests have been taken to test the randomness of the numbers:

Chi-square test

Chi-square test was given by Karl Pearson in 1900. It is a test of distributional accuracy. The chi-square test is a very common statistical test and is widely used in the analysis of random numbers ${ }^{6-7}$. The given number of observations is divided into n categories and the chi-square test $\left(\chi^{2}\right)$ is given by:

$$
\chi^{2}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \frac{\left(\mathrm{O}_{\mathrm{i}}-\mathbf{E}_{\mathrm{i}}\right)^{2}}{\mathbf{E}_{\mathrm{i}}}
$$

where O_{i} is the observed frequency and E_{i} is the expected frequency of $i^{\text {ith }}$ observation.

The C code for determining chi-square test can be written as:
\#include<stdio.h>
\#define MAX 1000
\#define seed 1
int main()
\{
int $\mathrm{i}, \mathrm{j}=0, \mathrm{r}[1000]$,freq[1000]=\{0\},count[10] $=\{0\}$;
float median;
srand(seed);
for(i=0;i<MAX;i++)\{
r[i] = rand()\%1000;
\}

$$
\begin{gathered}
\text { for(i= }=0 ; i<M A X ; i++)\{ \\
\text { freq[r[i]]++;; }
\end{gathered}
$$

$$
\}
$$

printf("Oi are\n");
for(i=0;i<1000;i++)

$$
\{
$$

$$
\text { count }[j]=\text { count }[j]+\text { freq[i]; }
$$

if(i\%100 == 99) \{
printf("\%d\n",count[j]);
j++;
\}
\}
printf("\n Oi-Ei and their squares are $\backslash n ")$;
float $\mathrm{v}=0$;
for(i=0;i<=9;i++) \{
int $y=$ count $[i]-100 ;$
printf("\%dlt \%dln",y,y*y);
$\mathrm{v}=\mathrm{v}+($ float $)\left(\mathrm{y}^{*} \mathrm{y}\right) / 100$;
\}
printf("value of Chi-square variable is \%fln",v); return 0;
\}

This test has been conducted by dividing the 1000 observations obtained in 10 equal categories having 100 observations in each. The expected frequency in each category of observation is 100 . The results of the expected and observed frequencies are shown in Figure 4 in the form of a histogram. The value of χ^{2} is calculated by the above formula and the calculations are summarised in Table 4.

Fig. 4: Histogram of observed and expected frequency

Table 4: Calculation of χ^{2} for the data

Interval	\mathbf{O}_{i}	$\mathbf{E}_{\mathbf{i}}$	$\mathbf{O}_{i}-\mathbf{E}_{\mathbf{i}}$	$\left(\mathbf{O}_{i}-\mathbf{E}_{\mathrm{i}}\right)^{2}$	$\left(\mathbf{O}_{i}-\mathbf{E}_{\mathrm{i}}\right)^{2} / \mathbf{E}_{\mathbf{i}}$
$0-99$	103	100	3	9	.09
$100-199$	92	100	-8	64	.64
$200-299$	103	100	3	9	.09
$300-399$	114	100	14	196	1.96
$400-499$	92	100	-8	64	.64
$500-599$	103	100	3	9	.09
$600-699$	90	100	-10	100	1
$700-799$	101	100	1	1	.01
$800-899$	96	100	-4	16	.16
$900-999$	106	100	6	36	.36
	1000	1000	0		5.04

The chi-square value (χ^{2}) comes out to be 5.04. The level of Significance (χ) is taken as 0.05 . The critical value $\left(\chi_{\alpha, n-1}^{2}=\chi_{0.05,9}^{2}=16.92\right)$ is determined from the Chi-square table ${ }^{1}$. If $\chi^{2}>\chi^{2}{ }_{\alpha, n}$. ${ }_{1}$ then the given sequence fails the chi-square test. Whereas, if $\chi^{2} \leq \chi_{{ }_{\mathrm{a}, n-1}}^{2}$ then the given sequence passes the chi-square test of random numbers.

Since the χ^{2} value is less than the critical value so the null hypothesis is accepted at the 5% significance level. Therefore the numbers follow a uniform distribution which is one of the properties of random numbers.

Runs test above and below median

The runs test is a common, nonparametric, distribution free test. Runs test is a good test to determine any fluctuating trends in the given sequence ${ }^{8-9}$. This test is based on the number of runs of consecutive values above and below the median. A run is defined as a series of increasing or decreasing values. And the number of such increasing or decreasing patterns is defined as length of a run. In a random data set, the probability that the $(i+1)_{t h}$ value is larger or smaller than the $i_{t h}$ value follows a binomial distribution, which forms the basis of the runs test.

Those values of the given sequence which are greater than the median are assigned ' a ', while those which are less are assigned ' b '. Values which are equal to the median are ignored. Let the number of 'a's be defined as N_{1} and 'b's as
N_{2}. The first step would be to calculate the number of runs in the sequence, and the values of N_{1} and N_{2}. This can be well illustrated as:
$\begin{array}{llllllll}\text { Sequence } & : & 25 & 34 & 45 & 29 & 37 & 48\end{array}$ median $=35.5$
Values assigned: a $a b a b b$
So the number of runs is 4 and value of $\mathbf{N}_{1}=3$ and $\mathrm{N}_{2}=3$.

The C code to find the number of runs and the values of \mathbf{N}_{1} (number of a's) and \mathbf{N}_{2} (number of b's) for the random numbers generated by the rand() function is written as:
\#include<stdio.h>
\#define MAX 1000
\#define seed 1
int main() \{
int i,k,swap,counta=0,countb=0,j,r[MAX],s[MAX];
char ch[MAX]=\{0\};
float median;
srand(seed);

$$
\begin{aligned}
& \text { for(i=0;i<MAX;i++) \{ } \\
& r[i]=\operatorname{rand}() \% 1000 \text {; } \\
& s[i]=r[i] \text {; } \\
& \text { \} } \\
& \text { for }(i=0 ; i<(\text { MAX }-1) ; i++)\{ \\
& \mathrm{k}=\mathrm{i} \text {; } \\
& \text { for }(\mathrm{j}=\mathrm{i}+1 \text {; } \mathrm{j}<\text { MAX ; } \mathrm{j}++ \text {) }\{ \\
& \text { if }(s[k]>s[j]) \\
& \mathrm{k}=\mathrm{j} \text {; } \\
& \text { \} } \\
& \text { if }(k!=i)\{
\end{aligned}
$$

```
        swap = s[i];
        s[i] = s[k];
        s[k] = swap;
    }
    }
if(MAX %2==0)
median = (s[MAX/2] + s[MAX/2 -1])/2.0;
else
median = s[(MAX-1)/2];
for(i=0;i<(MAX) ;i++) {
    if(r[i]<median) {
        ch[i]='a';counta++;}
    else if(r[i]>median) {
        ch[i]='b';countb++;}
    }
int previous=ch[0],runs=0;
for(i=1;i<(MAX-1);i++) {
    if(ch[i]!='a' && ch[i]!='b')
        continue;
        if((previous =='a' && ch[i]=='b')|l(
previous =='b' && ch[i]=='a'))
        runs++;
    previous = ch[i];
}
runs++;
printf("No of runs is %d \n Value of N1 is %d \n
Value of N2 is %d\n",runs,counta,countb);
```

return 0;
\}

The mean $\left(\mu_{u}\right)$ of the distribution of μ is

$$
u_{\mu}=\frac{2 \mathbf{N}_{1} \mathbf{N}_{2}}{\mathrm{~N}}+1
$$

and the standard deviation of μ is

$$
\sigma_{\mu}^{2}=\frac{2 N_{1} N_{2}\left(2 N_{1} N_{2}-N\right)}{N^{2}(N-1)}
$$

where $\mathrm{N}=\mathrm{N}_{1}+\mathrm{N}_{2}$. And the test statistic Z is given as

$$
\mathrm{Z}=\frac{(u \pm 0.5)-u_{\mu}}{\sigma_{\mu}}
$$

This test has been carried out on 1000 random numbers and the result obtained are given in Table 5.

Table 5: Test characteristics

$\boldsymbol{\mu}$	\mathbf{N}_{1}	\mathbf{N}_{2}	$\boldsymbol{\mu}_{\mathbf{u}}$	$\boldsymbol{i}_{\mathbf{u}}$	\boldsymbol{Z}
491	499	499	500	15.78	-.602

The level of significance (α) is taken as 0.05 and critical value of $Z_{\alpha / 2}$ is determined from the standard table ${ }^{1}$. The sequence is only excepted as random number, if $|Z|<Z_{\alpha / 2}$.

Critical value $=Z_{\alpha / 2}=Z_{0.025}=1.96$
Therefore for successfully passing the test:

$$
\begin{aligned}
& |Z|<Z_{\alpha / 2} \\
& -1.96<Z<1.96 \\
& -1.96<-.602<1.96
\end{aligned}
$$

As the current value for Z lies between ± 1.96 hence the null hypothesis is accepted at the 5% significant level.

Reverse arrangement test

Let us consider the number of observations to be N and $\mathrm{i}_{\text {th }}$ observation is denoted by T_{i}, for $i=1,2,3 \ldots N$. Count the number of times T_{i} $>\mathrm{T}_{\mathrm{i}}$ for each $\mathrm{i}<\mathrm{j}$. Thus a reverse arrangement can be defined as the occurrence of a number smaller than T_{i} after T_{i} in the sequence. Total number of reverse arrangements is denoted by A. Then the variable $h_{i j}$ is defined as:

$$
h_{i j}= \begin{cases}1 & \text { if } \quad x_{i}>x_{j} \\ 0 & \text { else }\end{cases}
$$

Then,

$$
A_{i}=\sum_{j=i+1}^{N} h_{i j}
$$

and

$$
A=\sum_{i=1}^{N-1} A_{i}
$$

First, h_{ij} is calculated for each number and summing these h's gives A_{i}. Then A_{i} is calculated for each observation and the sum of these A_{i} 's gives A, the total number of reverse arrangements. If the sequence of N observations are independent observations on the same random variable, then the number of reverse arrangements (A) is a random variable with a mean (μ_{A})

$$
u_{\mathrm{A}}=\frac{\mathrm{N}(\mathrm{~N}-1)}{4}
$$

and a variance

$$
\sigma_{A}^{2}=\frac{N(2 N-1)(N-1)}{72}
$$

This test has been applied on first 100 terms obtained by rand() i.e. with $\mathrm{N}=100$.
This test has been performed by using the C code as:
\#include<stdio.h>
\#define MAX 100
\#define seed 1
int main() \{
int i,h,j, r[MAX];
srand(seed);

```
for(i=0;i<(MAX);i++) \{
            \(r[i]=\) rand ()\(\% 1000\);
    \}
\(h=0\);
for ( \(\mathrm{i}=0\); \(\mathrm{i}<(\mathrm{MAX}-1)\); \(\mathrm{i}++\) ) \{
            for ( \(\mathrm{j}=\mathrm{i}+1\); \(\mathrm{j}<\mathrm{MAX}\); \(\mathrm{j}++\) ) \{
                if \((r[i]>r[j])\)
                h++;
    \}
    \}
printf("value of A is \%d",h);
return 0;
\}
```

The value of A obtained after calculation is 2501. Level of significance is taken as 0.05 , and the critical values $A_{N:(1-\alpha / 2)}$ and $A_{N ; \alpha / 2}$ are obtained from the standard table ${ }^{1}$. The given sequence is accepted as random numbers, only if the number of reverse arrangements A lies between the critical values. Hence for the sequence to pass the test:
$\begin{array}{ll}, & \mathrm{A}_{\mathrm{N;}(1-\alpha / 2)}<2501<\mathrm{A}_{\mathrm{N} ; / \alpha / 2} \\ , & \mathrm{~A}_{100 ; 0.975}<2501<\mathrm{A}_{100 ; 0.025}\end{array}$
$2145<2501<2804$

As the value for A in this experiment lies between 2145 and 2804 hence the null hypothesis is accepted at the 5% significance level. The mean and variation of the distribution are calculated by the above formula:
$\mu_{\mathrm{A}}=2475$
$\sigma_{A}^{2}=27362.5$

CONCLUSIONS

The random numbers generated by GCC compiler satisfies the test of uniformity, independence, summation and duplication. Uniformity is conformed by the histogram and the chi-square test. The property of summation and duplication are satisfied by the results of the summation statics. The properties of distribution and duplication are much more binding than those of uniformity and independence. This means that a set of numbers that display uniformity and independence are not random unless they have the properties of summation and duplication.

REFERENCES

1. Knuth, Donald E. The Art of Computer Programming. vol. 2. 2 ed. AddisonWesley, 1981.
2. Bennett, Deborah J. Randomness. Cambridge: Harvard University Press, 1998.
3. Garrett, Paul, Introduction to Cryptography. Notes. 2000.
4. Hellekalek, Peter. The p-Lab Project. <http:/ /random.mat.sbg.ac.at>.
5. Peter Selinger, Department of Mathematics and Statistics <http://www.mathstat.dal.ca/ ~selinger/random/>
6. Li, Ming and Paul Vitanyi. An Introduction to Kolmogorov Complexity and its Applications. New York: Springer-Verlag, 1993.
7. Walker, John. HotBits. 10 June 2000. <http:/ /www.fourmilab.ch/hotbits/>.
8. Louise Foley, Statistical analysis 2001, Trinity College's Management Science and Information Systems Studies (MSISS)
9. Charmaine Kenny, Statistical analysis 2005, Trinity College's Management Science and Information Systems Studies (MSISS)
