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ABSTRACT

The random numbers have been generated by the GCC compiler and tested for their
randomness. The code used by the library function of GCC compiler to generate random
numbers is also presented. Chi-square test, Runs test below and above median, and Reverse
arrangement test have been conducted to test the randomness. It has been shown that the
Random numbers generated by GCC compiler have successfully passed these tests.
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INTRODUCTION

A random number is a number generated
by certain process, whose outcome is
unpredictable. Random numbers are required to
be independent, so that there is no correlation
between successive numbers. Random numbers
are subject to intensive investigation due to their
application in simulation of random numbers,
statistical sampling, cryptography, computer
programming, numerical analysis, decision
making and recreation'? .

All the sources of random numbers
behave in the same way, and some are better than
others for different applications. The tests are
usually conducted by empirical tests and
theoretical tests. Empirical tests are conducted on
the sequence generated by a Random Number
Generator (RNG), and require no knowledge of

how the RNG produces the sequence. Theoretical
tests are better and require a knowledge of the
structure of the RNG.

Computer-generated random numbers
are referred as “pseudo random” numbers, on the
other hand random numbers generated by physical
processes are called “true random” numbers.
Many algorithms have been developed to generate
random numbers®** and also many tests to check
their randomness. Commonly used pseudo
random number generators are Linear
Congruential generator, Blum Blum Shub and
Lagged Fibonacci Generator. Most random
number generators require an initial number called
seed as a starting value. True random numbers
are generated by flipping coins, rolling dice,
keyboard latency, atmospheric noise picked up by
a radio receiver, decay of radioactive materials
and by the motions of lava lamps.
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Among all the random number generators, the
method used by the library function of GCC to
generate random numbers is Linear Congruential
generator.

Linear Congruential Method for
generation of Random numbers

Linear congruential method' was
originally proposed by Lehmer in 1948, but
reported by Knuth in 1951. It generates the
sequence of random numbers by the following
formula:

Y=(@*Y, ,+c)%m

where Y, is the i, term of the sequence and
m<0,0<a<m,0<c<mand0d’Y, (seed) <m

For example if a=2, c=3, m =7, seed = 1,
then the sequence generated by Linear
Congruential generator is: 5,6,1,5,6,1.........

Here, the sequence gets repeated after
an interval called the period of the sequence.
Therefore constants a, ¢, m should be chosen
carefully for getting a good generator.

Random number generated by GCC compiler
The GCC compiler has an inbuilt library
function rand() for generating random numbers
based on the non-additive feedback® . The GCC
compiler uses srand() function to initialise the
random function by passing a seed as its argument.
Mathematically, exact algorithm used by the rand()
of GCC library to generate random numbers with
a seed ‘s’ is given below.
The sequence with i term denoted by R, can be
calculated as:

R,=s

R, = (16807 * (signed int) R_,) mod
2147483647  (for 1<i<30)

R =R, (for 31<i<33)

R = (R, + R,,) mod 4294967296 (for
ie<34)

where 2147483647 = 2% - 1 and
4294967296 = 2%

The first 343 terms of this sequence are
ignored, and the first term obtained by the rand()

function is equal to the 344" term of this sequence.
If the i, term obtained by rand() function be denoted
by X,, then:

X =R, g >>1.

Itis a 31-bit number and the least significant
bit of R, ,,, has been ignored. The multiplication by
16807 is done in a large signed integer type so that
there is no overflow before the modulo operation.
Further R_, is converted to a signed 32-bit value
before the multiplication. Value obtained can only be
negative in the case of =1, if s < 2%. The modulo
operation is mathematical and result obtained is in
between 0 and 2147483646. Almost linear output
sequence is obtained even after ignoring the least
significant bit.

The C code for generating the random
numbers same as that generated by rand() can be
written as:

#include <stdio.h>
#define MAX 1000
#define seed 1
int main() {
int IMAX],i;
r[0] = seed;
for (i=1; i<31; i++) {
rli] = (16807LL * r[i-1]) % 2147483647;
if (ri] < 0) {
rli] += 2147483647;
}
}
for (i=31; i<34; i++) {
ri] = r[i-31];
}
for (i=34; i<344; i++) {
rli] = r[i-31] + [i-3];
}
for (i=344; i<MAX; i++) {
rli]= r{i-31] + r[i-3];
printf("%d\n",((unsigned int)r[i]) >> 1);
}
return O;

}

The terms X, generated by the above
algorithm using seed 1, are same as generated by
the rand() function of GCC and are recorded in
Table 1.
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Table 1: X, generated by the above C code

i X, i X, i X,
1 1804289383 20 1303455736 30 468703135

2 846930886 21 35005211 50 2038664370
3 1681692777 22 521595368 75 1998898814
4 1714636915 23 294702567 100 1956297539
5 1957747793 24 1726956429 200 1784639529
6 424238335 25 336465782 300 1176911340
7 719885386 26 861021530 500 1081174232
8 1649760492 27 278722862 600 553160358

9 596516649 28 233665123 800 1981208324
10 1189641421 29 2145174067 1000 1143565421

85

The various different sequences can be
generated by giving different initialising seed
values each time to rand() of GCC. The varying
seed value can be obtained by using time() function
present in the time.h header file of GCC library to
initialise the random function. It returns the number
of seconds passed from January 1, 1970 till the
current time. The GCC Library function time() can
be used with srand() as follows: srand(time(NULL))
The rand() can be used to obtain numbers in any
certain range by a slight modification. E.g. numbers
between 0 to m can be obtained by using modulo
(m+1) with the rand() . The rand() can further be
modified to obtain negative values by subtracting
appropriate number after modulo operation. The
following C code has been used to generate first
1000 terms with values between 0-999 by rand()
of GCC compiler which will be used for conducting

the randomness test, and some of the generated
terms are mentioned in Table 2.

#include<stdio.h>
#define seed 1
#define MAX 1000
int main()
{
inti,IMAX];
srand(seed);
for(i=0;i<MAX;i++)
{
rli] = rand()%1000;
printf("%d\n",ri]);
1

return 0O;

}

Table 2: T, generated by the above C code

i T, i T, i T,

1 383 15 763 100 539
2 886 20 736 200 529
3 777 25 782 300 340
4 915 30 135 400 868
5 793 40 42 500 232
6 335 50 370 600 358
7 386 60 281 700 775
8 492 70 857 800 324
9 649 80 750 900 587
10 421 90 399 1000 421
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Statistical Overview of the data

The statistical overview of the data
obtained from rand() of GCC compiler has been
calculated by taking different seeds from 1 to 10.
The parameter includes mean, median, maximum
value, minimum value, probability of occurrence

of even numbers, number of duplicate entries and
non-occurring numbers in the data set. The
summary statistics for the first 1000 random
numbers obtained from rand() of GCC compiler
are recorded in Table 3.

Table 3: Statistical overview of the data from rand()

Seed Mean Median Max Min P(Even) No of No of non-

Duplications Occurring
Values

1 499.495 497 999 0 .507 268 362

2 494.843 494.5 999 1 471 257 367

3 504.442 496 998 2 512 259 358

4 493.549 494 998 0 511 258 370

5 489.946 488 999 0 .480 263 369

6 512.263 531.5 999 2 495 266 371

7 500.201 505 999 1 .489 260 365

8 511.306 519.5 998 9 .506 266 390

9 508.331 510 998 1 475 258 358

10 504.028 523.5 999 0 476 270 372

Analysis of data

There are many techniques used for
analysing randomness of the sequence. Out of
these three have been taken for visual analysis of
the randomness and are graphical in nature.
Random numbers obtained by GCC compiler by
taking seed one will be used for analysis.
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The Run Sequence Plot

Run sequence plot is a graph of each
observation against the random numbers in the
sequence. Figure 1 is the run sequence plot of
1000 numbers obtained from rand() of GCC
compiler which shows a random pattern. The plot
fluctuates around 500, the expected mean of the
numbers, and these fluctuations appear random.

Fig. 1: Run sequence plot of random numbers obtained by rand()
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Lag plot be something wrong with the generator. Figure 2

Lag plot is an interesting graph for shows no outliers and the data points are spread
detecting outliers. If there are chance outliers or evenly across the whole plain. This is a good
significant outliers, this indicates that there may indication of randomness.
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Fig. 2: Lag plot of random numbers (T, againstT,,)

The Histogram in each category. In Figure 3 the random numbers

The histogram plot is the count of are divided into 20 categories with 50 observations
observations that occur in each subgroup. The in each, which confirms property of uniformity.
expected number of observations would be same

Histogram
Fig. 3: Histogram of rand()
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Theoretical test of randomness
The following three tests have been taken
to test the randomness of the numbers:

Chi-square test

Chi-square test was given by Karl
Pearson in 1900. It is a test of distributional
accuracy. The chi-square test is a very common
statistical test and is widely used in the analysis of
random numbers 7. The given number of
observations is divided into n categories and the
chi-square test (2 ) is given by:

x2= 3 ((:)i_]iji)z

where O, is the observed frequency and
E is the expected frequency of i observation.

The C code for determining chi-square
test can be written as:

#include<stdio.h>

#define MAX 1000

#define seed 1

int main()

{

int i,j=0,r[1000],freq[1000]={0},count[10] ={0};
float median;

srand(seed);

for(i=0;i<MAX;i++){

Lal

=%
'\1'-’

£ £
-\‘9‘:} P

W bservead e oeenoy

r[i] = rand()%1000;
}

for(i=0;i<MAX;i++) {
freq[r[i]]++;;
}
printf("Oi are\n");
for(i=0;i<1000;i++)

{
count(j] = count(j] + freq([il;
if(i%100 == 99) {
printf("%d\n",count[j]);
j++;
}
}

printf("\n Oi-Ei and their squares are \n");
float v=0;
for(i=0;i<=9;i++) {

int y = count[i]-100;

printf("%d\t %d\n",y,y*y);

v= v+ (float)(y*y)/100;

}
printf("value of Chi-square variable is %f\n",v);
return O;

}

This test has been conducted by dividing
the 1000 observations obtained in 10 equal
categories having 100 observations in each. The
expected frequency in each category of
observation is 100. The results of the expected
and observed frequencies are shown in Figure 4
in the form of a histogram. The value of ¥ is
calculated by the above formula and the
calculations are summarised in Table 4.

&
&

B Expecled Sequescy

Fig. 4: Histogram of observed and expected frequency
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Table 4: Calculation of y? for the data

Interval 0, E, 0-E, (0,-E)* (0,-E)?/E,
0-99 103 100 3 9 09
100-199 92 100 -8 64 64
200-299 103 100 3 9 09
300-399 114 100 14 196 1.96
400-499 92 100 -8 64 64
500-599 103 100 3 9 09
600-699 90 100 -10 100 1
700-799 101 100 1 1 01
800-899 96 100 -4 16 16
900-999 106 100 6 36 .36
1000 1000 0O 5.04

The chi-square value (x?) comes out to
be 5.04. The level of Significance (x) is taken as
0.05. The critical value (x*, ., = X%0s0= 16.92) is
determined from the Chi-square table' . If y*>x?
,then the given sequence fails the chi-square test.
Whereas, if y* <y ?, , then the given sequence
passes the chi-square test of random numbers.

Since the 2 value is less than the critical
value so the null hypothesis is accepted at the 5%
significance level. Therefore the numbers follow a
uniform distribution which is one of the properties
of random numbers.

Runs test above and below median

The runs test is a common, non-
parametric, distribution free test. Runs test is a good
test to determine any fluctuating trends in the given
sequence®® . This test is based on the number of
runs of consecutive values above and below the
median. A run is defined as a series of increasing
or decreasing values. And the number of such
increasing or decreasing patterns is defined as
length of a run. In a random data set, the probability
that the (i+1) , value is larger or smaller than the i
value follows a binomial distribution, which forms
the basis of the runs test.

Those values of the given sequence
which are greater than the median are assigned
‘a’, while those which are less are assigned ‘b’.
Values which are equal to the median are ignored.
Let the number of ‘a’s be defined as N, and b’s as

N,. The first step would be to calculate the number
of runs in the sequence, and the values of N, and
N,. This can be well illustrated as:

Sequence 25 34 45 29 37 48
median = 35.5

Valuesassigned: a a b a b b

So the number of runs is 4 and value of N, = 3 and
N,=3.

The C code to find the number of runs and the
values of N, (number of a’s) and N, (number of b’s)
for the random numbers generated by the rand()
function is written as:
#include<stdio.h>
#define MAX 1000
#define seed 1
int main() {
int i,k,swap,counta=0,countb=0,j,r[MAX],s[MAX];
char ch|[MAX]={0};
float median;
srand(seed);
for(i=0;i<MAX;i++) {
ri] = rand()%1000;
s[il=lil;
1
for(i=0;i<(MAX-1);i++){

k=i;
for(j=i+1;j<MAX;j++){
if ( s[k] > s[j])
k=j;

1
if (kl=i){
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swap = sfi];
s[i] = s[k];
s[k] = swap;
}
!
if(MAX %2==0)
median = (s[MAX/2] + s[IMAX/2 -1])/2.0;
else
median = s[(MAX-1)/2];
for(i=0;i<(MAX) ;i++) {
if(r{i]l<median) {
ch[il='a";counta++;}
else if(r[ij>median) {
ch[il='b";countb++;}
}
int previous=ch[0],runs=0;
for(i=1;i<(MAX-1);i++) {
if(ch[i]'="a' && chli]!'='b")
continue;
if((previous =='a' && ch[il=="b")II(
previous =='b' && ch[i]=="a))
runs++;
previous = chl[i];
1
runs++;
printf("No of runs is %d \n Value of N1 is %d \n
Value of N2 is %d\n",runs,counta,countb);

return O;
}
The mean (u ) of the distribution of p is
2 | | | |
u, = 2N1N2 + 1

N

and the standard deviation of p is

;7 = 2N} N2(2N; N2-N)
NI(N-1)

where N =N, + N,. And the test statistic Z is given
as

Z=(u £ 05)-u,
S,

This test has been carried out on 1000
random numbers and the result obtained are given
in Table 5.

Table 5: Test characteristics

H N N

1 2

M, i 4

u

491 499 499

500 15.78 -.602

The level of significance (o) is taken as
0.05 and critical value of Z ,is determined from
the standard table'. The sequence is only excepted
as random number, if 1ZI<Z ,

Critical value =Z ,=Z . = 1.96
Therefore for successfully passing the test:

1zl<z,

-1.96 < Z <1.96

-1.96<-.602<1.96
As the current value for Z lies between +1.96 hence
the null hypothesis is accepted at the 5% significant
level.

Reverse arrangement test

Let us consider the number of
observations to be N and i, observation is denoted
by T, fori=1,2,3... N. Count the number of times T,
> TJ. for each i <. Thus a reverse arrangement can
be defined as the occurrence of a number smaller
than T, after T, in the sequence. Total number of
reverse arrangements is denoted by A. Then the
variable h i is defined as:

1 if

0 else

X~ X
h, =



SRIVASTAVA, Orient. J. Comp. Sci. & Technol., Vol. 6(1), 83-92 (2013) 91

Then,
N
A = 3, hy
j=i+1
and

N-1
A = ) A,
i=1

First, h is calculated for each number
and summing these h’s gives A. Then A is
calculated for each observation and the sum of
these A s gives A, the total number of reverse
arrangements. If the sequence of N observations
are independent observations on the same
random variable, then the number of reverse
arrangements (A) is a random variable with a mean

(My)

iy = N(N-1)
4

and a variance

N(2N-1)(N-1)
72

This test has been applied on first 100 terms
obtained by rand() i.e. with N=100.

This test has been performed by using the C code
as:

#include<stdio.h>

#define MAX 100

#define seed 1

int main() {

inti,h,j,rIMAX];

srand(seed);

G =

for(i=0;i<(MAX);i++) {
r[i] = rand()%1000;
1
h=0;
for (i=0;i<(MAX-1);i++){
for(j=i+1;j<MAX;j++){
if (r[i]>r[j])
h++;
}
1
printf(“value of A is %d”,h);
return O;

}

The value of A obtained after calculation
is 2501. Level of significance is taken as 0.05, and
the critical values AN;(1- ol2) and A, are obtained
from the standard table'. The given sequence is
accepted as random numbers, only if the number
of reverse arrangements A lies between the critical
values. Hence for the sequence to pass the test:

’ A <2501 < A

N;(1-0/2) N;0/2

A <2501 <A

100;0.975 100;0.025

2145 <2501 < 2804

As the value for A in this experiment lies
between 2145 and 2804 hence the null hypothesis
is accepted at the 5% significance level. The mean
and variation of the distribution are calculated by
the above formula:

H, = 2475
6,2 =27362.5

CONCLUSIONS

The random numbers generated by GCC
compiler satisfies the test of uniformity,
independence, summation and duplication.
Uniformity is conformed by the histogram and the
chi-square test. The property of summation and
duplication are satisfied by the results of the
summation statics. The properties of distribution
and duplication are much more binding than those
of uniformity and independence. This means that
a set of numbers that display uniformity and
independence are not random unless they have
the properties of summation and duplication.
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