5
&ﬂ

49070NH2?

ORIENTAL JOURNAL OF
COMPUTER SCIENCE & TECHNOLOGY

An International Open Free Access, Peer Reviewed Research Journal
Published By: Oriental Scientific Publishing Co., India.

www.computerscijournal.org

ISSN: 0974-6471
December 2012,
Vol. 5, No. (2):
Pgs. 315-320

SSL Based Transport Layer Security

J.VIUAYABHARATHI

Department of Computer Science, Mother Teresa Women’s University
Kodaikanal. (India)
(Received: July 1, 2012; Accepted: June 04, 2011)

ABSTRACT

The last couple of years has seen a growing momentum towards using the Internet for
conducting business. One of the key enablers for business applications is the ability to setup secure
channels across the internet. The Secure Sockets Layer (SSL) protocol provides this capability and
it is the most widely used transport layer security protocol. In this paper we investigate the
performance of SSL both from a latency as well as a throughput point of view. Since SSL is primarily
used to secure web transactions, we use the SPECWeb96 benchmark suitably modified for use
with the SSL protocol. We benchmark two of the more popular web servers that are in use today
and find that they are a couple of orders of magnitude slower when it comes to serving secure web
pages. We investigate the reason for this deficiency by instrument the SSL protocol stack with a
detailed profiling of the protocol processing components. Based on our findings we suggest two
modifications to the protocol that reduce the latency as well as increase the throughput at the

server.

Key words: SSL, Transport, Security

INTRODUCTION

Security is important on the Internet.
Whether sharing financial, business, or personal
information, people want to know with whom they
are communicating (authentication), they want to
ensure that what is sent is what is received
(integrity), and they want to prevent others from
intercepting their communications (privacy). The
Secure Sockets Layer (SSL) protocol provides one
means for achieving these goals at the transport
layer. It was designed and first implemented by
Netscape Corporation as a security enhancement
for their Web servers and browsers. Since then,
almost all vendors and public domain software
developers have integrated SSL in their security
sensitive client-server applications. At present, SSL

is widely deployed on the intranet as well as over
the public Internet in the form of SSL-capable
servers and clients and has become the de facto
standard for transport layer security. Recently, the
Internet Engineering Task Force (IETF) has started
an effort to standardize SSL as an IETF standard
under the name of Transport Layer Security (TLS)
protocol. In the rest of this paper, we refer to SSL as
the Transport Layer Security protocol, or simply TLS.
One of the reasons that TLS has outgrown other
transport and application layer security protocols
such as SSH, SMIME, and SET in terms of
deployment is that it is application protocol
independent. Conceptually, any application that runs
over TCP can also run over TLS. There are many
examples of applications such as TELNET and FTP
running transparently over TLS. However, TLS is

316

most widely used as the secure transport layer below
HTTP. A large number of Web sites dealing with
private and sensitive information, including all those
engaged in E-Commerce, use TLS as the secure
transport layer. This number is expected to grow
exponentially as more and more businesses and
users embrace electronic commerce. As security
becomes an integral feature of Internet applications
and the use of TLS rises, its impact on the
performance of the servers as well the clients is
going to be increasingly important.

The objective of this paper is to take a close
and critical look at the TLS protocol with an eye on
performance. The TLS protocol is composed of two
main components: (1) the TLS Record Protocol
responsible for data transfer, and (2) the TLS
Handshake Protocol responsible for establishing
TLS session states between communicating peers.
At the lowest level, layered on top of some reliable
transport protocol (e.g., TCP °), is the TLS Record
Protocol. The Record Protocol provides two basic
security services: privacy and message integrity. It
uses data encryption using symmetric cryptography
(e.g., DES 2, RC4 '8, etc.) to provide privacy and a
keyed message authentication digest to ensure
message integrity. The TLS Record Protocol is used
for encapsulation of various higher level protocol
messages, including the TLS handshake protocol.
The TLS Handshake Protocol is responsible for
authenticating the server and the client to each other.
It is also entrusted with the job of negotiating an
encryption algorithm along with the required session
keys before the application protocol transmits or
receives its first byte of data. The Handshake
protocol typically uses public key cryptography for
exchanging secret information. TLS allows the
session state to be cached for configurable amount
of time. If a client needs to setup a new TLS session
while its session state is cached at the server, it can
skip the steps involving authentication and secret
negotiation and reuse the cached session state to
generate a set of keys for the new session. In the
rest of the paper, we analyze the performance impact
of TLS on HTTP and quantify the overhead
associated with different components of TLS. To
measure the performance impact of TLS on Web
server performance, we have modified the
SPECweb96 benchmark to generate client workload
for servers and clients running HTTP transactions

VIJAYABHARATHI, Orient. J. Comp. Sci. & Technol., Vol. 5(2), 315-320 (2012)

over TLS. Using this modified SPECweb96
benchmark, we evaluated the performance of two
different secure Web servers with varying degrees
of session reuse. Our results show that depending
on the degree of session reuse the overhead due to
TLS can decrease the rate at which the server can
process HTTP transactions by up to two orders of
magnitude. To identify the overhead associated with
different components of TLS, we have instrumented
and traced the TLS Handshake Protocol and TLS
Record Protocol using timers with sub-micro second
granularity. Our results indicate that for a typical
HTTP transaction (10-15 Kbytes), the bulk of the
overhead comes from the TLS Handshake Protocol
unless the session state is reused. For very large
HTTP transactions (1 Mbytes or more), the overhead
due to data encryption and authentication is
significant. We also observed that TLS handshake
protocol adds significant latency to Web transfers
due its four-way handshake. In light of these
observations, we propose two techniques to improve
the performance of the TLS Handshake protocol,
namely caching of server certificates by clients and
athree-way handshake protocol. As discussed later
in the paper, by caching server certificates at the
client, it is possible to reduce the number of
messages exchanged during TLS handshake and
consequently a round trip time. Certificate caching
also reduces computational overhead at the client
and the volume of data transferred during
handshake. The second scheme is designed to
offload the computationally expensive private key
operations from the server.

Transport Layer Security

TLS provides the ability to setup private
communication channels in a public network.
Broadly, the operation of TLS can be split up along
two major axes. One is the cryptographic techniques
that it uses to provide security and the other is the
operation of the protocol itself. First we review a few
basic cryptographic operations that are critical to
TLS and then describe the protocol.

A. Basic Mechanisms

TLS uses symmetric key encryption
techniques, such as DES and RC4, to ensure
privacy. In symmetric key encryption the sender and
the receiver share a secret key which is used to
encrypt or decrypt messages. However, this secret

VIJAYABHARATHI, Orient. J. Comp. Sci. & Technol., Vol. 5(2), 315-320 (2012)

key must somehow be exchanged between the
communicating parties before any secure
communication can take place. During the TLS
handshake process the client chooses a secret
which it then sends to the server. Public key
cryptography is used to protect this exchange. Unlike
symmetric key cryptography, public key cryptography
uses a pair of keys, a public key and a private key.
As the name suggests, the owner of the key pair
publishes the public component of the key and keeps
the private component secret. If the public key is
used to encrypt a message then only the private
key can be used to decrypt it and vice versa. In TLS,
the initiator of a session, typically the client,
generates the secret and encrypts it with the public
key of the peer, typically the server. The server, upon
receipt of this message, uses its private key to
decrypt it. Since the server is the only one who
possesses the private key, from this point on, the
client and the server share a secret which no one
else knows. One of the main reasons why public
key cryptography is used only to communicate the
shared secret is the fact that it is computationally
rather expensive and so in reality it can only be used
to encrypt a few bytes of data. So the key exchange
problem is solved, provided the client knows the
server’s public key. This can be supplied by the
server, but the client has to be able to bind the public
key with the true identity of the server. TLS makes
use of X.509 certificates to associate a public key
with the real identity of an individual, server, or other
entity, known as the subject. A certificate is signed
by a trusted agency, commonly referred to as a
certificate authority (CA). The signature process
again typically involves public key cryptography. The
signing entity computes a hash function of the data
to be signed and encrypts that with its private key.
The signature can be verified by performing the
corresponding decryption with the public component
of the private key and then matching the result with
the freshly computed hash of the data. Although
encryption guarantees privacy, it does not ensure
message integrity. An adversary may still alter the
encrypted messages without the sender or
receiver being aware of it. TLS ensures message
integrity by sending a digest of the message to
the receiver along with the original message.
Digest algorithms, such as MD5and SHA, are
one-way hash functions that output a unique
digest for each input message. It is relatively

317

easy to verify a digest given the original message.
However reproducing the message given the digest
is impossible. TLS guarantees message integrity by
keying the message digests with a secret key shared
between the sender and the receiver. Any
modification to the message will result in a mismatch
between the digests computed by the sender and
the receiver, thus enabling the receiver to detect a
compromised message.

Protocol Overview

Rather than defining a completely new
transport layer protocol, TLS is layered on top of an
existing reliable transport protocol viz. TCP/IP. This
naturally introduces an in efficiency since the TLS
negotiation cannot start until the TCP/IP handshake is
completed. However, this clean separation between
the transport and security operations, enabled a
fairly rapid prototyping effort and partly contributed
to the wide popularity of TLS. A TLS connection
involves two stages. First, the communicating parties
optionally authenticate each other and then
exchange session keys. This phase is known as the
TLS handshake. Once the handshake is complete,
the two parties share a secret which can be used to
construct a secure channel over which application
data can be exchanged. TLS is an asymmetric
protocol. It differentiates between a client and a
server. The TLS handshake sequence may vary,
depending on whether the RSA or Diffie-Hellman
key exchange is used. Although TLS handshake
allows both the client and the server to be
authenticated to each other, most commonly, it is
only the server that is authenticated. Client
authentication is optional and is omitted in most
cases. A typical TLS session makes use of the RSA
key exchange with only the server being
authenticated. We only consider this case in this
paper. The client initiates the communication by
sending a Hello message to the server. The
Hello message includes a random number that
is used in the handshake to prevent replay
attacks. In response to the client Hello, the server
replies with a Hello of its own, followed by a
certificate that contains the server’s public key.
Optionally, it may also send a chain of certificates
belonging to the authorities in the certification
hierarchy. The client verifies the certificate (or chain
of certificates) by verifying the identity of the server
and checking the validity of the CA’s signature. The

318

client then generates a pre-master secret and
encrypts it with the public key obtained from the
server’s certificate. This is sent to the server which
does a decryption using its private key, thus
obtaining the pre-master secret. The pre-master
secret is used to generate a master secret that is
now shared between the client and the server. The
master secret is then used to generate symmetric
keys for encryption and message authentication. In
other words the master secret is a shared state
between the client and server and this constitutes a
TLS session. This session can identified by the
session ID that was included in the initial server Hello
message. In contrast to the initial handshake
protocol, the reestablishment of a cached TLS
session is relatively simple.

The server checks in its cache to
determine if it has state associated with this
session. If the session state still exists in the cache,
it uses the stored master secret to create keys for
the secure channel. The client repeats the same
process and generates an identical set of keys.
Note that multiple secure channels between the
same pair of hosts can be established by reusing
a single session state. This is a rather key feature
of the TLS protocol that is particularly important in
the context of the world wide web. A single secure
web-page may be composed of multiple HTTP links
and being able to reuse an existing session state
to obtain the multiple links greatly reduces the
latency and processing involved in setting up the
secure channel.

Performance

Although TLS can be used with a variety
of application protocols, such as TELNET and
FTP, the most important and most common use
of TLS has been to ensure privacy and
authentication for HTTP transactions. All
commercial web sites that require privacy and
authentication use TLS. In this section, we
benchmark the performance of secure Web
servers and quantify the overheads of different
components of TLS. We use the SPECweb96
benchmark as it attempts to capture real-world
usage of a web-server and is based on the
analysis of server logs from a few different Internet
servers.

VIJAYABHARATHI, Orient. J. Comp. Sci. & Technol., Vol. 5(2), 315-320 (2012)

RESULTS AND DISCUSSION

The servers are configured with certificates
for 1024-bit keys. In all of these experiments, we
used RC4 for data encryption and MD5 for message
authentication, since these are the most widely used
in real life. Performance of other encryption and
message authentication schemes are presented
later in the section. We varied the degree of session
reuse from 0-100%. When session reuse is 0% all
TLS sessions setup between the server and the
clients require a full handshake with the associated
public and private key operations. When session
reuse is 100%, only the first TLS session setup
between the server and a client involves a full
handshake. All subsequent connections reuse the
already established session state between the
server and the client. When the percentage of
session reuse is in between 0 and 100, the clients
reuse the same session for a certain number of times
depending on the value of the reuse percentage.
The way this is done is by maintaining a running
counter of the number of connections that attempted
to reuse session state. Whenever this counter drops
below the desired fraction (reuse percentage) of total
connections, the client attempts to reuse an existing
session ID. For example, when the reuse percentage
is setto 50, the sessions setup by a SPECweb client
takes the form NRNR..., where N stands for a new
session and R stands for a reused session. The
Apache server can handle, at most, 15 requests per
second when there is no session reuse. The
Netscape server can only handle about 5 requests
per second. At these operating points the latencies
are extremely high in both cases with Apache
coming in at around 300 msec and Netscape
hovering above the 600 msec mark. We notice that
as the amount of session reuse is increased the
performance improves and with a 100% reuse the
latency is fairly low even when the rate of connection
requests is quite high. The numbers for 100% reuse
are only provided as a reference since in all
practicality a web-server is unlikely to experience
such a large amount of session reuse. In
comparison, the SPECweb96 numbers for Netscape
and Apache for regular web-pages on the same
server are around 300 and 250 requests a second,
respectively.

VIJAYABHARATHI, Orient. J. Comp. Sci. & Technol., Vol. 5(2), 315-320 (2012)

The behavior of the Netscape server is
fairly typical of what one would expect when the level
of session reuse is varied. In Figure 2 we observe
that the latency reduces and the sustainable
throughput increases as the level of session reuse
is increased. In contrast, with the Apache server at
light loads there does not seem to be much
difference in the latency results when the reuse is
increased from 0 to 80%. This behavior may be a
result of how session reuse is implemented in the
Apache web server. Apache uses a process model
in its web-server implementation. The web-server
is composed of several, dynamically created server
processes that serve web-requests. Rather than
make a single entity responsible for dispatching the
requests to each of the server processes, the
creators of Apache chose to have each server
process pick up a connection request and service
it. This provides for some natural load-balancing
features since a server process only picks up a
request when it is free. When a TLS client wishes to
reuse a session, it includes the session ID in the
client Hello message. However at the time the
connection is accepted by a server process, it has
no knowledge of what the session ID will be since
the Hello message is received only after the
connection is accepted. Unfortunately, with most

319

flavors of Unix, once a connection request is
accepted there is no way to rescind it and so the
server process is forced to serve the request,
whether or not it has the session ID in its cache.

CONCLUSION

TLS is widely deployed on the intranet as
well as over the public Internet in the form of TLS-
capable servers and clients and has become the
de facto standard for transport layer security.
Although the security implications of TLS has been
under the microscope ever since its inception, similar
analysis of its performance has not been performed.
In this paper, we have analyzed TLS from a
performance perspective and quantified its impact
on applications protocols and servers,
specifically HTTP And Web servers. Using a
modified SPECweb96 benchmark, we evaluated
the performance of Web servers running HTTP
transactions over TLS. Our results show that the
overhead due to TLS can decrease the number
of HTTP transactions handled by up to two
orders of magnitude. Given the rather significant
growth in the use of TLS particularly in the
burgeoning field of E-commerce, it is not clear how
secure web-servers of today will keep pace with this
growth.

REFERENCES

1. C. Allen and T. Dierks. The TLS Protocol
Version 1.0. Internet Draft, Internet
Engineering Task Force, Work in progress
(1997).

2. ANSI X3.106. American National Standard
for Information Systems-Data Link
Encryption. American National Standards
Institute (1983).

3. T. Berners-Lee, R. Fielding, and H. Frystyk.
Hypertext Transfer Protocol — HTTP/1.0,
(1995).

4. D. Bleichenbacher. Chosen Ciphertext
Attacks Against Protocols Based on The RSA
Encryption Standard PKCS#1. In Advances
in Cryptology-Crytpo 98 (1998).

5. D. Bleichenbacher, B. Kaliski, and J. Staddon.
Recent Results on PKCS#1: RSA Encryption
Standard. RSA Laboratories’ Bulletin, 24

(1998).

6. W. Diffie and M. E. Hellman. New Directions
in Cryptography. IEEE Transactions on
Information Theory, 1T-22(6):74—84 (1977).

7. A. Frier, P. Karlton, and P. Kocher. The SSL
3.0 Protocol. Netscape Communications
Corporation (1996).

8. V. International and M. International. Secure
Electronic Transaction 1.0 specification (997).
http://www.setco.org.

9. ISI for DARPA. Transport Control Protocol.
RFC 793, (1981).

10. NIST FIPS PUB 180-1. Secure Hash
Standard. National Institute of Standards and
Technology, U.S. Department of Commerce,
DRAFT (1994).

11. B. Ramsdell. S/MIME Version 3 Message
Specification. Internet Draft, Internet

320

12.

VIJAYABHARATHI, Orient. J. Comp. Sci. & Technol., Vol. 5(2), 315-320 (2012)

Engineering Task Force, May 1998. Work in 13. R. Rivest, A. Shamir, and L. M. Adleman. A
progress. Method for Obtaining Digital Signatures and
R. Rivest. RFC 1321: The MD5 Message Public-Key Cryptosystems. Communications
Digest Algorithm (1992). of the ACM, 21(2):120-126 (1978).

