
ORIENTAL JOURNAL OF
COMPUTER SCIENCE & TECHNOLOGY

www.computerscijournal.org

ISSN: 0974-6471
December 2012,

Vol. 5, No. (2):
Pgs. 251-256

An International Open Free Access, Peer Reviewed Research Journal
Published By: Oriental Scientific Publishing Co., India.

INTRODUCTION

A Software Process Description
Language is a language to describe a Software
Process Description. Software Process
Descriptions differ from each other in many things,
e.g. the level of detail, the domain, which is
supported, the paradigm they implement. Software
processes can help us to exercise and made and
deliver (complex) software systems. Hereby, a
Software Process is a set of activities in a project,
which is executed to produce the software system.
A Software Process Description is an abstract

representation of a set of software processes. The
use of Software Process Description Languages
has many advantages: The clear defined syntax
and semantics make a tool-based interpretation
possible. In software projects this is actually used
for controlling, planning, and coordination of
software projects.

Many Software Process Description
Languages have been exercised and made. Some
implement one paradigm, for example rule based
languages (pre-/post conditions), net based
languages (petri nets, state machines), or

Feature Aware Prediction of User Action in Software Process

SEEMA SAFI, SAJID ANWAR and LALA RUKH

Institute of Management Sciences, KPK Peshawar, Pakistan.
Agriculture University, kpk Peshawar, Pakistan.

(Received: July 12, 2012; Accepted: August 04, 2012)

ABSTRACT

A lot of Software Process Description Languages have been exercised and made. Some
implement one paradigm, for example rule based languages (pre-/post conditions), net based
languages (petri nets, state machines), or imperative languages (based on programming
languages). Others implement multiple paradigms .all of them are not very efficient, reliable and
robust and the approach we use, observes the user’s action and tries to predict his next step.
For this we use approaches in the area of machine learning (sequence learning) and adopt these
for the use in software processes. This paper describes an approach for user (e.g. SW architect)
assisting in software processes. The sequence prediction technique, which is presented in this
paper, is based on IPAM4 and Jacobs/Blockeel5. The results show that our approach predicts
continuously better than the original algorithm. In this paper we described an approach to assist
users by predicting the next step the user starts during process enactment. We evaluated this
work by defining situations and we compared our approach with the core algorithm we have
adopted.

Key words: Software engineering, Sequence prediction, Machine learning,
Software processes, Software process description languages.

252 SAFI et al., Orient. J. Comp. Sci. & Technol., Vol. 5(2), 251-256 (2012)

imperative languages (based on programming
languages). Others implement multiple paradigms.

There are advantages and
disadvantages inherent in every paradigm: Rule
based languages have loosely coupled steps,
which are flexibly combinable. The advantage is
that the user (e.g. the exercise and madeer, SW
architect) of the process can execute the step in
his own way. The disadvantage is that tool support
during process execution is not possible for the
user of the process. Thus, there is a lower benefit
for the user Imperative and net based languages
implement the step order directly. The step order
corresponds to a generally valid order. Hereby, a
tool based process execution is possible. The
problem is that the order of the steps defined in the
process description does not reflect the user’s
working method.

Our goal is to define a Process
Description Language, which prevents these
disadvantages so that it is a) flexibly executable
for the user (e.g. engineer, architect) but can
nevertheless b) support the user with a tool by
suggesting the next steps in the actual context.

The rest of the paper is arranged as follows
Section 1.1 describes the related work in

the area of software process languages and
sequence learning.

Section 2 gives an overview of our
software process description language. In section
3 our approach to assist the user during process
execution is shown. Section 4 shows our
evaluation. The last section 5 is the conclusion.

Related Work
Good summaries of work in the area of

software process languages are6-5. This paper
contains approaches in the field of sequence
prediction, which is a subgroup of machine
learning. Hartmann and Schreiber describe
different sequence prediction algorithms in their
paper3. The sequence prediction technique, which
is presented in this paper, is based on IPAM4 and
Jacobs/Blockeel2.An overview paper of this work
can be found here6.

Outlines of the process description language
In this section we present a short overview

of the concepts of our process modeling language.
This language contains only elements, which are
needed to assist the user during process
enactment. The language does not contain other
elements like phases, roles, etc. We have designed
a process language based on pre-/post condition.
One key element in our language is a step which
is an activity during process execution. For example
there are existing steps like “Map requirement to
Component” or “Specify Component”.

Every step has pre- and post conditions,
that describe if the user can start or stop the step
execution. Furthermore, steps can contain a set of
contexts. This can be an execution context, which
is a subset of the product model (e.g. all classes
within component c are in one execution context)
or a “parameter” which describes a certain
situation. This can be for example the
implementation language, the used case tool,
framework, the project, and so on. The number of
steps is fix at project execution time; the number of
contexts can vary (e.g. if a new product is added to
the product model, one or more execution contexts
are created corresponding to the process
description). A more detailed description of our
language can be found here1.

User assistance
For user assistance we have exercised

and made an approach to predict the next step the
user wants to start. Our approach observes the
last couple of started steps (and corresponding
contexts) and tries to build a database where
identified sequences are stored. Our work is based
on the work of Davison/Hirsh4, and Jacobs/
Blockeel2.

Fig. 1: Our approach for predicting

253SAFI et al., Orient. J. Comp. Sci. & Technol., Vol. 5(2), 251-256 (2012)

In the next subsection the results of the
work of Davison/Hirsh and Jabobs/Blockked are
presented.

Overview of the underlying work
IPAM is the work of Davison/Hirsh and

addresses the prediction of UNIX commands. The
approach implements a first order markov model,
so the prediction which is made is based on the
last observed element. IPAM stores unconditional
and conditional probabilities in a database. After
each observation the entries of the database are
updated as follows: Pi (x|y) = a - p(x|y) + (1 – a) for
x=current observation and y=last observation. The
entries with x ≠ current observation are updated
with: Pi (x|y) = a - p(x|y) is a parameter between 0
and 1. Davison/Hirsh recommend a value of ≈ 0.8.

The work of Jacobs/Blockeel is based on
IPAM but implements a higher order markov model.
If……y1y0 x was observed and the prediction for x
was correct (e.g. P(x|y2 y1 y0) has highest
probability) new entries are stored to the database.
Let C be the set of suffixes of…… y1y0 with P(a|l)>
0, for all c € c. Let l be longest Suffix of … y1y0 x with
P(a|l)> 0. The following new entries are stored to
the database:
P(z|c o x)= P(z|l) for all c € c and z € observed
elements.

Our approach
The central part of our approach is the

LookupDB which stores the experience data figure
1 (middle box). Each of the elements of the
LookupDB stores, among other things, a condition
(cond), a step prediction, and a probability (P). This
describes the probability (P) that the next step
(prediction) will be started, given the occurrence
of the step sequence cond. For example: An
element of LookupDB can store the condition 1,2,3.
When the steps 1,2,3 are observed, the probability
that step 1 will be started is 0,9. Further, for each
element in the condition sequence a set of relevant
context probabilities are stored. Those are these
contexts which were observed in the past.

For prediction (see figure 1 right) of the
next step all relevant elements of LookupDB are
taken and for each of these elements an “actual
probability” is calculated. Here, our approach
considers the learned context relevance in

LookupDB and the actual observed contexts in
the corresponding window. After prediction and
after observation our algorithm learns this
observation by updating the conditional
probabilities and context relevance of all matching
elements in the LookupDB (see figure 1, left). In
the following out approach is specified in a more
detailed way.

First, let us define some relevant elements
of our meta model (see [6]):
(1) Let S be index set which represents the set

of Steps
(2) Let C be index set which represents the set

of Contexts
(3) Let CC be index set which represents the

set of ContextClassifications
To address the past observed steps we need
an index set I:

(4) Let I be index set [-n,…,0].
The function observation returns the
observed step at the index i, where i=0
means the last observation, i=-1 the last but
one observation, et cetera (see fig. 1 top
right):

(5) Observation € l → s
Furthermore, we need a function which
returns the observed context at index i and
at the Context Classification cc:

(6) Observation 2 C (1 x cc) → 0

In the example in fig. 1, observation2(0,IN) returns
6.

LookupDB
We define our LookupDB:

(7) Let LOOKUPDB={0,1,2,…} be Index Set
Each element of LOOKUPDB represents an

element of the LookupDB. Every element of
our LookupDB has a condition cond. We
define the function

(8) cond € (LOOKUPDB x 1) → C that returns
the conditional step of an element of the
LookupDB at an index.

(9) lencond € LOOKUPDB → C returns the
length of the condition defined in (8) cond
(Idbi) is defined for I € [- lenCond(Idb),0]

The function prediction returns the
predicted step of the element of the LookupDB:

254 SAFI et al., Orient. J. Comp. Sci. & Technol., Vol. 5(2), 251-256 (2012)

(10) Prediction µ LOOKUPDB →S.
(11) P µ LOOKUPDB → [0,1]

defines the probability of the element of
the LookupDB that the predicted step occurs. The
function contextweight returns a weight for each
context classification (figure 1: the lines of the table,
e.g. IN, OUT), index (figure 1: rows of the table)
and context (number in the fields of the table) for
each element of the LookupDB:

Contextweight µ (LOOKUPDB x CC x 1 x
C)→([0,1],[0,1])

Contextweight(lbd,cc,I,c)= (x,y) with x =

Number of observed .’s in .. and _ =
Number of all observed contexts ; (x/y) defines the
probability that the context c at position cc and i is
relevant) Now, we define a function that returns 1 if
a specified entry of LookupDB corresponds to the
last observed steps:
(13). Match ε (LOOKUPDB x N) → {0,1}
Match (idb, of f set)=

1 if cond (ldbq) observation (q-of f set) for all q | (,0)

0

lencond idby

therwise

= ∈ −

3.4 Prediction
For prediction we define the following functions:
(14). Get AMC

∈

{1xCCxCx[0,1]}[0,1] getAMC
({(I,cc,c,w)})=amc with amc: =arithmetic
mean of all w > ¸(¸ is threshold) and

(15) F∈LOOKUPTABLE → {(1xCCxCx[0,1])}
F(idb)={(I,cc,c,w)} with I [-lencond (idb),0]and c
= observation 2(I,cc) for all I and cc and w = x/y

with (x,y)
=contextweight (idb,cc,i,c)

The function f takes an entry of
LOOKUPDB and returns a set of elements
(index,cc,c,w). w corresponds to the contextweight
of ldb for each index i and cc in ldb and for the
corresponding c found in the observation. The
function getAMC takes a set of elements
(index,cc,c,w) and returns the arithmetic mean of
all w. getAMC(f(ldb)) returns a “parameter” that the
element of the LookupDB (and the learned context
weights inside) corresponds to the observed
contexts.

The function getActualP takes an entry of
LOOKUPDB and calculates an actual P weight

dependent on ldb and the actual observation (this
weight is used to select the best entry of
LOOKUPDB for prediction):

(16) g e t A c t u a l P L O O K U P D → à [0 , 1]
getActualP(idb) = getAMC(f(ldb)*P(ldb)}
Now, we can describe the function to predict
the next step:

(17). Makeprediction ε LOOKUPDB → S
Makeprediction ({Ldb})= S) with

 S = prediction (ldb) for maximal get actualp
(lsb)

To predict the next step we call the function
makeprediction with a set of all elements ldb of
LookupDB with match(ldb,0)=1.

Learning
To update the LookupDB, the following

steps are done (note: observation(0) is the step a
prediction we made and we want to learn):
(18) addEntry {(LOOKUPDB}) x cond x
lencond x prediction x p)
→({LOOKUPDB}x cond x lencond x prediction x
p).
addEntry (ldb0,cond0,lc0,pre0,p0)= (ldb1,cond1,lc1,
pre1,p1) with
a. n ∉ idb0 and n ε ldb1
b. ((n,0), observation (-1)) cond0 and ((n,o)

observation (-1))ε cond1

c. (n,1) ∉ lc0 and (n,1) ε lc1

d. (n, observation (0)) ∉ pre0 and (n,
observation(0))ε pre1

e. (n,1-α) ∉ p0 and (n,1-α) ε p1

Let LDB ⊆ LOOKUPDB: LDB = {ldb|ldb ∈
LOOKUPDB match (lbd, 1) = 1}

For each element idb ∈ LDB the following steps
are done:

(19). Update P ∈ (p x LOOKUPDB) → P with:
 Update P (P0, idb = p1 with (ldb,pp) ∈ P0 and

(ldb, α*pp+(1-α))∈
(20). UpdateContextProb ∈ (contextweight x

LOOKUPDB)
→ contextweight
update Context Prob (cw0,ldb)=cw1 with

(ldb,cci,c,x,y)
∈cwo and (lbd,cc,i,c,x+1,y+1)∈ cw1 fpr allc
=observation 2 (I,cc) and (ldb,cc,I,c,x+1,y)∈ cw1for
all c
≠observation 2 (I,cc)

255SAFI et al., Orient. J. Comp. Sci. & Technol., Vol. 5(2), 251-256 (2012)

If the alst prediction was correct new entries are
added to the lookupDB according to the work of
jacobs et al., |2|. Let Q ⊆ LOOKUPDB be a subset
of LOOOKUPDB with.
(21). Q= {idb\ldb ∈ LOOKUPDBm Cond (ldb,i) =
Observation (I,1) for all I ∈ [lencond (lbd), 0]}
Let L ∈ LOOKUPDB be subset of LOOKUPDB with.
(22). L = {ldb\ldb ∈ LOOKUPDB cond (ldb,i)
= Observation(I,o) for all I ∈[lencond (ldb), 0]}
Let // be the element of L with the longest lencond
and P(//)>0. The function update LOOKUPDB is
defined as.
(23). updateLOOKUPDB ∈ ({LOOKUPDB}x Qxllx
vond x lencond x prediction x p x contextweight)à
({LOOKUPDB}x cond x lencond x prediction x p x
contextweight)
updateLOOKUPDB(LDB0,q,l,c0,lc0,pre0,p0,cw0)
(LDB1,C1,lc1,pre1,p1,cw1) with (see{5})
a. {0,1,…,n} ∈ LDB0 and {0,1,…n,…m}∈LDB1 with
|LDB0|+|q|=|LDB1|
b. Let diff be LDB1\LDB0 and {for all qq Îq there is
an ldif fel in lediff with.
a. ((q,i),s)∈ Co and ((ldif fel, i-1),s)∈ c1 for all
I and s and ((ldif fel, 0), oberservation (0))∈ c1

b. (q,1) ∈ lc0 and (ldif fel, l +1)∈ lc-1

c. (q,s)∈ pre0and (ldif fel,s)∈ pre1 for all s
d. (q,p) ∈ p0 and (ll, p2)Î p0 and (ldif fel, p2)
p1

e. The fuction adds new entries to lookupDB
by taking the entries which have predicted the
observation correctly and extending the
corresponding conditions by adding the
observation (see [2] for detail).

Evaluation
For the evaluation of the approach

described in section 3 we derived a realistic
situation. In this situation the requirements of the
system are existent. The goal is to exercise and
made an architecture (components, classes) and
their implementation. The process description
consists of 4 steps: 1) Identify component, 2) Map
requirement to Component, 3) Specify component
(refine requirement), 4) Implement component.

In the system two types of components
are existing: a) Complex/hardware related
components. Here, the engineer has a prototypical
method to exercise and made the component
(steps 2-4 are executed sequentially). b)
Components which classes have a high coupling.
Here, the engineer has a broad design method
(step1; all steps 2; all steps 3; all steps 4).

For evaluation three sequences of steps
(with corresponding contexts) were build:
i) exercise and madement of components only of
the type a, ii) exercise and madement of
components only of the type b, and iii) random mix
of a and b.

Our approach is compared with the
algorithm from Jacobs/Blockeel [2]. The results are
shown in figures 2. This figure contains two graphs
for each situation: The first (top) describes the total
number of correct predictions and the second

Fig. 2: Evaluation results (red: Our approach; blue: Jacobs Blockeed)

256 SAFI et al., Orient. J. Comp. Sci. & Technol., Vol. 5(2), 251-256 (2012)

describes the percentage distribution of correct
prediction. The Jacobs Blockeel approach is
shown with blue color and our approach is shown
with red color.

In all situations our approach predicts
better than the Jacobs Blockeel algorithm.

Remarkable is that in situation 3 (the “real
world” situation) our approach predicts the steps
substantially better than the JB approach. After 2/3
of all steps our algorithm predicts always correct.
On the other hand the algorithm of JB “drifts” to
65% correct predictions.

CONCLUSIONS

In this paper the results show that our
approach predicts continuously better than the
original algorithm.

The method we described an approach
to assist users by predicting the next step the user
starts during process enactment. We evaluated this
work by defining situations and we compared our
approach with the core algorithm we have adopted.
We plan to evaluate our approach with “real project
data” Furthermore, we’ll integrate our concepts of
the process language in a standard language/
meta model and implement an integrated tool
support for our prediction approach.

Our future work for the other researcher are:
1) Using the experience data (of the users of

one or more projects) for organization-wide
process improvement (e.g. derive a
standard process description (standard
sequence of steps; e.g. for a handbook) out
of the experience data).

2) Supporting novice users (e.g. user works in
a new project/new company) by providing
the experience data of other users

REFERENCES

1. M. Deynet, „User-Centric Process
Descriptions”, presented at the 3rd
International Conference on Software
Technology and Engineering ICSTE,
Malaysia (2011).

2. N.Jacobs, H. Blockeel, A. Celestijnenlaan,
und others, „sequence prediction with
mixed order markov chains “, in In
Proceedings of the Belgian/Dutch
Conference on Artificial Intelligence
(2002).

3. M. Hartmann und D. Schreiber, „Prediction
algorithms for user actions”, Proceedings

of Lernen Wissen Adaption, ABIS, S. 349–
354 (2007).

4. B. D. Davison und H. Hirsh, „Predicting
sequences of user actions”, in Notes of the
AAAI/ICML 1998 Workshop on Predicting
the Future: AI Approaches to Time-Series
Analysis (1998).

5. S. T. Acuna, „Software Process Modelling
6. Kamal Zuhairi Zamli, „process modeling

languaes:a literature review A Literature
Review”, Dez- 2001. [Online]. Available:
ht tp: / /myais. fsktm.um.edu.my/278/ .
[Accessed: 13-Jan-2009].

