
INTRODUCTION

A branch of Lattice theory i.e a Concept
Analysis (CA) let us to discover significant
Groupings of essentials that has familiar
characteristic and is referred as Attributes in
Concept Analysis literature. These Groupings are
described as Concept and capture resemblance
among a set of Elements founded on their known
Properties.

In the particular case of Software
reengineering, the system are Composed of a big
amount of dissimilar Entities (Classes, Methods,
modules, subsystems) and there are dissimilar

ORIENTAL JOURNAL OF
COMPUTER SCIENCE & TECHNOLOGY

www.computerscijournal.org

ISSN: 0974-6471
June 2012,

Vol. 5, No. (1):
Pgs. 155-159

An International Open Free Access, Peer Reviewed Research Journal
Published By: Oriental Scientific Publishing Co., India.

Using Conceptual Analysis in
Java Environment for the X-Ray view on a Class

ZAHEER ASLAM, MOHAMMAD KAMRAN KHAN, SHAHZAD RIZWAN,
FAWAD ALI KHAN, ZAHID HAROON and NOOR ZAMAN

CECOS University Hayatabad Peshawar, Pakistan.
Sarhad University KPK Peshawar, Pakistan.

Agriculture University KPK Peshawar, Pakistan.

(Received: February 12, 2012; Accepted: June 04, 2012)

ABSTRACT

Modularity is one of the very vital Methods in Software Engineering and a requirement for
every reliable Software. As the design space of Software is normally pretty large, it is important to
offer automatic way to assist modularizing it. An automatic way for Software Modularization is
Object Oriented Concept Analysis (OOCA). X-Ray view of the Class is one of the features of this
Object Oriented Concept Analysis. We will utilize this design in a Java Environment.

Keywords: Modularity, Object Oriented Concept Analysis views,
Relyencies, Classes, Methods and Attributes.

kinds of relationships among them. It also signifies
Relyencies among the Classes or entities. X-Ray
views —a Technique based on Concept Analysis -
which reveal the internal relationships among
groups of Methods and Attributes of a Class. X-
Ray views are Composed out of basic cooperation
among Attributes and Methods and assist the
Engineer to assemble a mental model of how a
Class workings within inside.

Existing Design
Within Object Oriented Software, the

smallest unit of progress and testing is a Class.
Typically, a Class is Composed of Instance
Variables utilized to signify the state, and Methods

156 Aslam et al., Orient. J. Comp. Sci. & Technol., Vol. 5(1), 155-159 (2012)

utilized to signify the performance of the Classes.
Then, understanding and discovers several
aspects anyhow a class works:

• How the Methods are interacting mutually
(Coupling among Methods).

• How the Instance Variables are functioning
(or not) mutually in the Methods (Coupling
among Instance Variables).

• Which Methods are using (or not) the State
of the Class.

• If there are Methods that form a cluster and
describe mutually a accurate performance
of the Class.

• Which Methods are measured as Interfaces

•Which Methods are utilized as entry points
(Methods that are measured as Interfaces
and communicate with other Methods
defined in the Class).

• Which Methods and Instance Variables
signify the core of the Class.

• Which Methods are using all the State of
the Class.

In paper [1], the authors have given an
design of Concept Analysis. Mathematically,
Concepts are maximal collections of Elements
distribution familiar Properties. To use the CA
Technique, one only needs to identify the Properties
of interest on each Element, and do not need to
consider about all possible combination of these
Properties, As these Groupings are made
automatically by the CONCEPT ANALYSIS
algorithm. The possibility of capturing
resemblances of Elements in groups (Concepts) -
based on the specification of simple Properties
permit to discover familiar features of the Elements.
When we are capable to distinguish the Entities in
terms of Properties, and we can detect if these
distinctiveness are constant in the system, then
we can decrease the amount of Information to
examine and we can have an abstraction of the
dissimilar parts of a system. These abstractions
assist us to start to see how the parts are working,
how they are defined and how they are connected
to other parts of the system .The Elements are the
Instance Variables and the Methods defined in the
Class, and the Properties are how they are related
among themselves. If we have the set of Instance
Variables {• , B}, and the set of Methods {P, Q, X, Y}
defined in a Class, the Properties we use are:

B is utilized by P means that the Method P is
accessing directly or through an access or / mutator
to the Instance Variable B. Q is described in P
means that the Method Q is described in the
Method P via a self-call. It also shows indirect
Relyencies among Elements if exists. They have
also revealed dissimilar types of relations and
Relyencies through some Notations.

{E•,..,E•} • {M•, ..,M•} means that the
Entities{E•,..,E•} rely Exclusively on {M•, ..,M•}. This
means that {M•, ..,M•} are the only Entities that are
related through the property • to {E•, ..,E•}. {E•, ..,E•}
• {M•, ..,M•} means that the Entities{E•,..,E•} do not
rely Exclusively on {M•, ..,M•}.{E•, ..,E•} R*{M•, ..,M•}
means that the entities{E•,..,E•} rely Exclusively and
transitively on {M•, ..,M•}. This means that {M•, ..,M•}
are the only ones that are related to {E•, ..,E•}
through the property • and R•, where •• is an
intermediary property, as there is a set {N1,..,Nk}
such that: {E•,..,E•} • {N1, ..,Nk} •• {M•, ..,M•}. {E•,
..,E•} • {M•, ..,M•} means that the Entities{E•,..,E•}
do not rely completely but transitively on {M•,..,M•}.
This means that {M•, ..,M•} are not the only ones
that are connected to {E•, ..,E•} through the property
• and ••, where •• is an intermediate property, as
there is a set {N1, ..,Nk} such that: {E•, ..,E•} • {N1,
..,Nk} •• {M•, ..,M•}. A special case: {E•, ..,E•} ¬• {M•,
..,M•} means that the Entity {E•, ..,E•} has any
Relyencies on {M•, ..,M•}. In paper [2], the authors
have discussed dissimilar types of X-Ray views,
which will be useful for our future work. In paper [3]
there is a Concept on Modularization using the
Conceptual analysis on Object Oriented
Environment.

Application
Our design is now to use the above said

Concepts in the Environment of Java and to way
out the Modularization in Java programs.
Modularization as well helps in Software
reengineering. For the present reason, let us have
an example of Java coding. We have applied the
planned design in dissimilar Properties of Java
programming each of which are illustrated
underneath.

Polymorphism
Polymorphisms deal with of dissimilar

forms of a Method where limits are dissimilar

157Aslam et al., Orient. J. Comp. Sci. & Technol., Vol. 5(1), 155-159 (2012)

according to the forms of the Methods.
Polymorphisms can too happen in constructors.
Class Overload {
int •;
Void test (int x) {
•=x;
System.out.println (“•: “ + ¡);
}
void test(int x , int y) {
•= x;
int b= y;
System.out.println (“• •nd b: “ + • + “,” + b);
}
}
Class Method Overloading {
Public Static void main (String args[]) {
Overload overload = new Overload();
Overload. test(10);
Overload. test(10, 20);
}
}

Instance Variable a is not commonly
associated to test(int x) or
test(int x, int y).
{ a } • { test(intx), test(int x, int y) } ——————1
{ b } • { test(intx, inty) }————————————
——2

So, where 2 relationships are found and
we can say that these two relations will create two
Concepts.

Overriding
In a class of hierarchy, when a method in

a subclass has the same name and the same type
signature as a method in that of a superclass, then
the method in a subclass is called an override the
technique in a superclass. As we know that
overriding ia a runtime polymorphism. The Methods
are similar in syntax. It is certain in the run time,
which Method is to be invoked.

Method overriding.
Class {
Int i, j;
 (int •, int b) {
i = •;
j = b;
}

// display i and j
Void show()
{
System.out.println (“i and j: “ + i + “ “ + j);
}
}
Class B {
intk;
B(intc) {
k = c;
}
void show(){ // display k – this override show() in
•
System.out.println (“k: “ + k);
}
}
Class Override {
Public Static void main(String args[]) {
B subOb = new B(1);
subOb.show(); // this calls show() in B
}
}
• () accessing the Instance Variables i , j
 . Show() [show() of Class •] accessing the
Instance

Variables directly for both • () and . show() the
Relation will come like this :
{i, j} • {• (), . show() } —————————— 1

Similarly B() andB. show() absolutely related to

Variable k. so we can say that the relationships are
like this:
{B(), B. Show()} • {k} ———————————— 2
So , two relations are generating two Concepts .
Now as the
Method show() is overridden, we shall consider
the .
show() and B. show () as a single Entity say show(
).
•s we are allowing for here only the property of
Overriding we shall pay no attention to the other
Methods and we can decrease the relationships
or Relyencies like:
show() • { i, j, k } and as a result creating a module.

Inheritance
Inheritance is a characteristic in Java

where the constituent of a Class becomes heir to

158 Aslam et al., Orient. J. Comp. Sci. & Technol., Vol. 5(1), 155-159 (2012)

Properties or Attributes from its base Classes.
Inheritance can be of dissimilar forms multiple,
hierarchical, multistage and hybrid.
Class {
Int x;
Int y;
void show x y ()
{
System.out.println (“ x and y : “ + x + “ “ + y);
}
}
Class B extends •
{
intz;
void show z(){
System.out.println(“z : “ + z);
}
}
Class Inheritance {
Public Static void main (String args [])
{
 • = new ();
B b= new B();
• . x = 5; // x of superclass •
•.y = 5; // y of superclass •
Show xy (); // show xy () of Class •i.e. the superclass
x= 10; // x of subclass B as extended from •
y= 10; // y of subclass B as extended from •
k= 10; // k of own subclass B
b.show xy(); // show xy of superclass • extended
by
Subclass B
b. show z(); // own Method show z() of Class B
}
}
x, y is equally and wholly related to {show xy ()} in
case of Class • and in case of Class B too as
Show xy () is inherited by Class B from Class . So
we can say that :
{x, y } • { show xy() }. Here one Concept is created.
—————————————— 1

So, the relation goes like this :
{z } • {show z()}. Another Concept is created.——2
• s all relationships are mutually Exclusive we can
get aggregation and can be write as:
{x, y, z }•{ show xy(), show z() }————————
—3

Exception handling
Exception handling is the property of Java

by which it can invoke some work when a number
of usual jobs are prohibited to implement by some
defective Codes.

Class MyException {
Public Static void main (String args []) {
Int d, a;
try {
d= 0;
a= 42 / d;
System. Out. Println (“ This will not be printed. “);
} Catch (• rithmetic Exception e) { // Catching of
divided by zero error
System.out.println(“ This is Division by zero
creating
an Exception !!!”);
} System.out.println(“ This happen when the catch
is done ….”);
}
}

Now here we can say that, try-Catch block
is in a straight-line access the Variables as every
time the try block is executed then only the
Arithmetic Exception e arises i.e. the Instance
Variables are mutually exclusive with Exception e.
Thus they are creating Concepts and as a result a
module. By Notation we write that:

{ a, d} • {try-Catch () }

Abstraction
Abstraction is the characteristic of Java

to cover facts from the customers so that the user
can deal simply with the functionalities of the
Codes.

Class P•ly
{
// Implementation and private members hidden
P•ly (int, int);
double eval (double);
void add (P•ly);
Void mult (P•ly);
Public String toString ();
}
Public Class Binomial
{

159Aslam et al., Orient. J. Comp. Sci. & Technol., Vol. 5(1), 155-159 (2012)

Public Static void main (String[] args)
{
intN = Integer. parseInt(args [0]) ;
double p = Double. ParseDouble (args [1]) ;
P•ly y = new P•ly (1, 0);
P•ly t = new P•Íly (1, 0);
t.add (new P•ly (1, 1));
for (inti = 0; i < N; i++)
{
y. mult (t) ;
Out.println(y + “”);
}
Out.println(“value: “ + y.eval (p));
}
}
Method add () is using PÍly () constructor. So, by
Notation
we can write that :
{add () } • * { PÍly () } ——————————— (1)

Furthermore, the Method add() and mult
() by means of the total Class Methods
straightforwardly or not directly as we can see from
the Class definition .Then also we can write that,
{add (), mult () } •* {Class P•ly } —————— (2)
It means that those Methods are using the Class
Methods or else.

CONCLUSION

In this paper we endeavor to implement,
execute and to put in operation the basic Properties
of Object Oriented model with the help of Concept
Analysis Notation to generate Concepts as well
as the modules. These modules will help us for
reengineering as reengineering deals with change
in the modules of Codes to build the obsoluted or
about to obsoluting Software rework.

1. Gabriela Ar´evalo, Stephan Ducasse, Oscar
Nierstrasz. “X-Rayview on a Class using
Conceptual Analysis” published in the
Conference at University of Antwerp, p: 76-
80 in 2003.

2. Gabriela Ar´evalo, Stephan Ducasse, Oscar
Nierstrasz. “Understanding Classes using
X-Rayviews” cited in the Proceedings of
2nd. MASPEGHI (ASE), p: 9-18 in 2003.

3. H. H. Kim, Doo-Hwan Bae. “Object-oriented
Concept Analysis for Software

REFERENCES

Modularization” cited in the Proceedings of
IET Software, p: 134~148 in 2008.

4. S. Demeyer, S. Ducasse, andO. Nierstrasz.
Object-Oriented ReEngineering Patterns.
Morgan Kaufmann, 2002.

5. B. Ganter andR. Wille. Formal Concept
Analysis : Mathematical Foundations.
Springer Verlag, 1999.

6. M. Fowler. Refactoring: Improving the Design
of Existing Programs. Addison-Wesley,
1999.

