
INTRODUCTION

Definition of a Blended Attack
A blended threat is often referred as a

“blended attack.” Some people refer to it as
combined attacks” or “mixed techniques.” We are
not attempting to make a strong definition for this
term, but we wish our readers to understand that
we use the term “blended attack” in the context of
computer viruses where the virus exploits some sort
of security flaw of a system or application in order
to invade new systems. A blended threat exploits
one or more vulnerabilities as the main vector of
infection and may perform additional network attacks
such as a denial of service against other systems.

Security exploits, commonly used by
malicious hackers, are being combined with
computer viruses resulting in a very complex attack,
which in some cases goes beyond the general scope
of antivirus software. In general, a large gap has
existed between computer security companies,
such as intrusion detection and firewall vendors

Oriental Journal of Computer Science & Technology Vol. 1(2), 151-154 (2008)

Blended attacks exploits, vulnerabilities and
Buffer-overflow techniques in computer viruses

A.VENKATESWARA RAO* and MANDAVA V. BASAVESWARA RAO¹

*Department of Computer Science, Noble Institute of Science & Technology, Visakhapatnam (India).
¹Sadineni Chowdariah College of Arts & Science, Maddirala, Chilakaluripet (India).

(Received: October 25, 2008; Accepted: Decembe 07, 2008)

ABSTRACT

Exploits, vulnerabilities, and buffer-overflow techniques have been used by malicious hackers
and virus writers for a long time. However, until recently, these techniques were not commonplace
in computer viruses. The CodeRed worm was a major shock to the antivirus industry since it was
the first worm that spread not as a file, but solely in memory by utilizing a buffer overflow in Microsoft
IIS. Many antivirus companies were unable to provide protection against CodeRed, while other
companies with a wider focus on security were able to provide solutions to the relief of end users.
Usually new techniques are picked up and used by copycat virus writers. Thus, many other similarly
successful worms followed CodeRed, such as Nimda and Badtrans. In this paper, the authors will
not only cover such techniques as buffer overflows and input validation exploits, but also how
computer viruses are using them to their advantage. Finally, the authors will discuss tools, techniques
and methods to prevent these blended threats.

Key words: Vulnerabilities and Buffer-overflow techniques, computer viruses.

and antivirus companies. For example, many
past popular computer security conferences did not
have any papers or presentations dealing with
computer viruses. Thus, apparently some computer
security people do not consider computer viruses
seriously as part of security, or they ignore the
relationship between computer security and
computer viruses.

When the CodeRed worm appeared, there
was obvious confusion about which genre of
computer security vendors could prevent, detect,
and stop the worm. Some antivirus researchers
argued that there was nothing that they could do
about CodeRed, while others tried to solve the
problem with various sets of security techniques,
software, and detection tools to support their
customers’ needs. Interestingly, such intermediate
solutions were often cr iticized by antivirus
researchers. Instead of realizing the affected
customers’ need for such tools, some antivirus
researchers suggested that there was nothing to
do but to install the security patch. Obviously, this

step is very important in securing the systems.

However, the installation of a patch on
thousands of systems may not be easy to deliver at
large corporations. Furthermore, corporations may
have the valid fear that new patches could introduce
a new set of problems, compromising system
stability. CodeRed (and blended attacks in general)
is a problem that needs to be taken care of by
antivirus vendors as well as by other security product
vendors, so that multi-layered security solutions can
be delivered in a combined effort to deal with
blended attacks.

Background
The origin of blended attacks begins in

November 1988, which was the year that the Morris
worm was introduced. The Morris worm exploited
flaws in standard applications of BSD systems:

It tried to utilize remote shell commands to
attack new machines by using rsh from various
directories. It demonstrated the possibility of cracking
password files. The worm attempted to crack
passwords in order to get into new systems. This
attack was feasible because the password file was
accessible and readable by everyone. Although the
password file was encrypted, someone could
attempt to encrypt test passwords and then compare
them against the encrypted ones. The worm used a
small dictionary of passwords that the author of the
worm believed to be common or weak. Looking at
the list of passwords in the author’s dictionary, we
have the impression that this was not the most
successful of the worm’s attacks.

If the previous step failed, the worm
attempted to use a buffer-overflow attack against
VAX-based systems running a vulnerable version
of fingerd. (More details on this attack are available
later on). This resulted in the automatic execution of
the worm on a remote VAX system. The worm was
able to execute this attack from either VAX or Sun®
systems, but the attack was only successful against
targeted VAX systems. The code was not in place to
identify the remote OS version and thus, the same
attack was used against the fingerd program of Sun’s
running BSD. This resulted in a core dump (crash)
of fingerd on targeted Sun systems.

 The Morris worm also utilized the DEBUG
command of the sendmail application. This
command was only available in early
implementations of sendmail. The DEBUG
command made it possible to execute commands
on a remote system by sending an Simple Mail
Transfer Protocol (SMTP) message. This command
was a potential mistake in functionality and was
removed in later versions of sendmail. When the
DEBUG command was sent to sendmail, someone
could execute commands as the recipient of the
message.

Nevertheless, the worm was not without
bugs. Although the worm was not deliberately
destructive, it overloaded and slowed down
machines so much that it was very noticeable after
repeated infections occurred. Thirteen years later,
in July, 2001, CodeRed repeated a very similar set
of attacks against vulnerable versions of Microsoft
Internet Information Server (IIS) systems. Using a
well-crafted buffer overflow technique, the worm
executed copies of itself (depending upon its
version) on Windows 2000 systems running
vulnerable versions of Microsoft IIS. The slowdown
effect was similar to that of the Morris worm. Further
information on the buffer-overflow attacks is made
available in this paper (without any working attack
code).

Types of Vulnerability
Buffer overflows

Buffers are data storage areas, which
generally hold a predefined amount of finite data. A
buffer overflow occurs when a program attempts to
store data into a buffer, where the data is larger than
the size of the buffer.

For example, imagine an empty 33 cl. glass.
This is analogous to a buffer. This buffer (empty
glass) can store 33 cl. of liquid (data). Now, imagine
that I wish to transfer a pint, which is about 47 cl., of
beer from my full pint glass into the empty 33 cl.
glass. As I begin to fill the glass (buffer) with beer
(data), everything is fine until the end when beer
begins to spill over the glass and onto the table.
This is an example of an overflow. Clearly, such an
overflow is bad for beer and unfortunately, even
worse if such vulnerabilities exist in computer
programs.

152 Rao et al., Orient. J. Comp. Sci. & Technol., Vol. 1(2), 151-154 (2008)

When the data exceeds the size of the
buffer, the extra data can overflow into adjacent
memory locations, corrupting valid data and possibly
changing the execution path and instructions. The
ability to exploit a buffer overflow allows one to
possibly inject arbitrary code into the execution path.
This arbitrary code could allow remote, system-level
access, giving unauthorized access to not only
malicious hackers, but also to replicating malware.

Buffer overflows are generally broken into
multiple categories, based on both ease of
exploitation and historical discovery of the technique.
While there is no formal definition, buffer overflows
are, by consensus, broken into three generations.
First generation buffer overflows involve overwriting
stack memory; second generation overflows involve
heaps, function pointers, and off-by-one exploits; and
finally, third generation overflows involve format
string attacks and vulnerabilities in heap structure
management.

For simplicity, the following explanations
will assume an Intel CPU architecture, but the
concepts can be applied to other processor designs.

First generation
First generation buffer overflows involve

overflowing a buffer that is located on the stack.

Overflowing a Stack Buffer

For example, the following program
declares a buffer that is 256 bytes long. However,
the program attempts to fill it with 512 bytes of the
letter “A” (0x41).
int i;
void function(void)
{
char buffer[256]; // create a buffer
for(i=0;i<512;i++) // iterate 512 times
buffer[i]=‘A’; // copy the letter A
}

The diagram below illustrates how the EIP
(where to execute next) is modified due to the
program overflowing the small 256 byte buffer. When
data exceeds the size of the buffer, the data
overwrites adjacent areas of data stored on the stack
including critical values such as the instruction

pointer (EIP),which define the execution path. By
overwriting the return EIP, an attacker can change
what the program should execute next.

1. A function is using a buffer 256 bytes long. The

program attempts to fill the buffer with 512As.

2. After 256 As the buffer is full and remaining as will

begin too overflow into adjacent memory.

3. The remaning as being to overwrite the od EBP.

4. And also overwrite the return BP

Exploiting a stack buffer
Overflow Instead of filling the buffer full of

As, a classic exploit will fill the buffer with its own
malicious code. Also, instead of overwriting the

1. A function is using a buffer 256 bytes long. The

program beings to fill the buffer with attacker code.

2. After 256 bytes, the buffer is full any remaining

bytes will being to overflow into adjacent memory.

3. First EPB to overwritten

4. And teh EIP is overwritten with the address pointing

back to the malicious code. Now, the program will

being to execute the maliclous code.

Rao et al., Orient. J. Comp. Sci. & Technol., Vol. 1(2), 151-154 (2008) 153

return EIP (where the program will execute next)
with random bytes, the exploit will overwrite EIP with
the address to the buffer, which is now filled with
malicious code.

This causes the execution path to change
and causes the program to execute injected
malicious code. While the above example
demonstrates a classic stack-based (first
generation) buffer overflow, there are variations. The
exploit utilized by CodeRed was a first generation
buffer overflow that is more complex and is described
below.

Causes of stack-based overflow vulnerabilities
Stack-based buffer overflows are caused

by programs that do not verify the length of data
being copied into a buffer. This is often caused by
using common functions that do not limit the amount
of data that is copied from one location to another.

Current Security
Many of these blended threats are effective

today because most current security products can
not prevent the threats. Furthermore, only some
products can detect the threats once they have
arrived on the system, or simply alert an attack has
taken place. For example, traditional antivirus
products do not scan Windows memory. This means
blended threats such as CodeRed, which reside
solely in memory might remain undetected. In
addition, most intrusion detection products merely
alert rather than block when a signature matches.
Thus, while an administrator may receive an alert,
the worm will have already infected the machine.
Some modern intrusion detection systems employ
gated technology, which means threats are actually
blocked when detected. One of our own solutions
included the use of a memory scanner to detect the
worm in memory. The program also determined the
need for the patch. Unfortunately, CodeRed’s code
can appear on the heap of IIS processes that are
not vulnerable to the attack. Therefore a scanning
solution had to prove the active existence of the
worm on the machine

1. [spaff88] Eugene H. Spafford, The Internet
Worm Program: An Analysis.

2. [Gordon88] Sarah Gordon, “The Worm Has
Turned,” Virus Bulletin, August, 1998.

3. [McCorkendale-Szor] “Code REd Buffer
Overflow,” Virus Bulletin, September 2001.

4. http://www.cve.mitre.org/, (Common
Vulnerabilities and Exposures).

5. http://www.cert.org/.
6. [Szor99] “Memory Scanning Under Windows

NT,” Int. Virus Bull. Conf., 1999, pp.325_346,
also see

7. http://securityresponse.symantec.com/
avcenter/reference/memory. scanning.
winnt.pdf.

8. [Szor2000] “Bolzano Bugs NT,” Virus Bulletin,

September 1999.
9. [Litchfield] Windows 2000 Format String

Vulnerabilities, May 8, 2002.
10. [Howard-LeBlanc] Writing Secure Code,

Chapter 12.
11. [Personal Communication] Bruce

McCorkendale, Frederic Perriot.
12. [One] Smashing The Stack For Fun And

Profit, Phrack 49, Vol. 7, Issue #49, File 14.
13. http://www.peterszor.com/badtrans.pdf “Bad

Transfer,” Virus Bulletin, February 2002.
14. http:/ /msdn.microsoft.com/workshop/

components/activex/safety.asp.
15. http://msdn.microsoft.com/library/en-us/

script56/html/letcreatetypelib.asp.

REFERENCES

154 Rao et al., Orient. J. Comp. Sci. & Technol., Vol. 1(2), 151-154 (2008)

