
INTRODUCTION

Software systems are extremely complex;
the amount of information contained in a system
implementation is more than we can hope to
comprehend. The same is true of the natural world
that surrounds us, and we cope with it in exactly the
same way: by creating a suitable model of the
system, and working with that.

The suitability of a model depends upon
the intended application. Clearly, we must include
every piece of information that is relevant to our
purpose, but we must also try to exclude any piece
of information that is not. A model with too much
information may be difficult to comprehend, and too
complex for automated software engineering.

A model that is entirely suitable for one
purpose may be less suitable for another: some vital
piece of information may be missing. If we have
several purposes in mind, then we may need several
different models of the same system. A sensible,
economical way of doing this is to define a single
large model of the system, and then construct
smaller models as projections of this model, one for
each purpose.

Oriental Journal of Computer Science & Technology Vol. 1(2), 107-116 (2008)

Using UML for automatic test generation

Y. PRASANTH, K. SUBBA RAO and L.S.S. REDDY

K.L. College of Engineering, Vaddeswaram, Guntur District (India).

(Received: October 10, 2008; Accepted: November 21, 2008)

ABSTRACT

This paper presents an architecture for model-based verification and testing using a profile of
the Unified Modeling Language (UML). Class, object, and state diagrams are used to define essential
models: descriptions that are relatively complete. Object and state diagrams are used to introduce test
directives. Models written in this profile may be compiled into a tool language: the Intermediate Format
(IF). Descriptions written in IF can be animated, verified, and used to generate tests. As well as defining
the profile for UML, the paper explains the basis of the compilation into IF, and reports upon the problems
encountered.

Key words: UML, automatic test generation.

In this paper, we describe an architecture
for model-based verification and testing in which
projected models are generated automatically for
each specified purpose. We explain how these
projected models can be translated-again,
automatically-into a language of state machines,
animated, verified, and used as a basis for
automatic test generation. The models and
purposes are described using the United Modeling
Language (UML)10, although the architecture could
be applied to any modeling language with as
suitable, state-machine semantics.

We begin with a description of the
architecture itself. In Section 3, we define a UML
profile for models and purposes. In Sections 4 and
5, we explain how models are translated into
eXtensible Meta-Language (XML), projected, and
then compiled into the Intermediate Format (IF). We
end with a discussion of related and future work.

Architecture
The first component of the architecture is

the system model, written in UML; this is a collection
of class, state, and object diagrams:
• The class diagram identifies the entities in

the system.

• The state diagrams-one for each class-
explain how these entities may evolve.

´ The object diagram specifies an initial
configuration.

The object diagram is not required if an
initial configuration is supplied for each test.

The second component, again written in
UML, is the test directive; this consists of object and
state diagrams:
´ The object diagrams informs the construction

of the projected model, identifying particular
states of interest;

´ The state diagram explains how the projected
model is to be explored.

The system model and the test directive
can be constructed using any of the standard
toolsets, such as Rational Rose³ or Together Control
Center16. The model is then exported in XML
Metadata Interchange (XMI)9 format, and processed
to produce a projected version. The processor takes,
as an additional input, the object diagrams from the
test directive, again in XMI format.

The projected version of the model is
written in XML, using a set of schemas in which the
information needed for the subsequent compilation
is easily accessible. Naturally, the compiler could
be written to accept XMI, but

´ separating the tasks of orientation and
compilation simplifies the design of the
compiler;

´ it is easy to define-and embed-extensible
Style-sheet

Language (XSL) transformations between
XMI and our compiler-oriented XML representation.
The compiler takes the XML representation of the
projected model and produces a collection of
interacting state machines, written in the
Intermediate Format (IF) language¹. The form of
each machine is dictated by the state diagrams of
the projected model, their interaction mimics the
action–event mechanism of UML.

An if representation can be animated,
verified, or model checked using the tools of the
CAESAR/ALDEBARAN Development Package
(CADP)6. In this case, the test directive describes a
test upon the model, a property to be checked, and
the output is either a confirmation that the property
holds, or an explanation of why it does not.
Alternatively, an IF representation can be provided
as input to the TGV (Test Generation with
Verification) tool7.

In this case, the state diagram component
of the test directive is used to guide the exploration
of the underlying transition system, constructed-on-
the-fly, if necessary-from the IF state machine
description.

 System model

UML

class diagram

object diagram

process
compile

generate /
model-check

Projected model
XML

State machine
IF

Test directive UML object diagrams state diagram

Test suite / result

API

Fig. 1: An architecture or automatic test generation

108 Prasanth et al., Orient. J. Comp. Sci. & Technol., Vol. 1(2), 107-116 (2008)

TGV provides output in Tree and Tabular
Combined Notation (TTCN)-a standard format in the
telecommunications industry-but this output can be
translated to produce test cases in the language of
any API (Applications Programming Interface),
whether this is C, C++, or Java.

Using UML
The Unified Modeling Language (UML)10

is a set of techniques for specification, visualisation,
and documentation. The language is based primarily
upon object-oriented methodology; however,
concepts were added from Harel’s language of
StateCharts¹¹, Petri Nets, Message Sequence
Charts and SDL.

An important aspect of UML is the
presence of variation points in the language
semantics: the definition of the language is
intentionally incomplete; further interpretation is
required before a model written in UML can be used
as a basis for formal analysis or automatic test
generation.

Also required is instantiation. UML does not
include a language of data types and operations;
instead, these are written in the target language of
the specification, normally an imperative
programming language. If we wish to compile our
models, we must define a target language.

The selection of a target language, and a
prescription that lists the various notations and
features-UML comprises several different notations,
each with a range of features-is called a UML profile.
In this section, we will describe a UML profile for
system models and test directives.

Target language
We will use IF as our target language.

Operations, actions, and data types will all be written
using a basic subset of IF syntax, accessible to
anyone who has some familiarity with imperative
programming languages. There are two obvious
advantages to this choice:
´ our diagrams will use the same target

language, whether the language of
implementation is C, C++, or Java;

´ The compiler can focus upon the translation

of state machines, and the interpretation of
UML actions; it does not need to translate
primitives.

The translation from the implementation
language of an API-whether it is C, C++, or Java-to
this syntax is easily automated. The only aspect that
invites user intervention is the choice of data
representation.

The primitive types defined for IF include
the standard C datatypes, float, arrays, and records.
So user intervention is not required; however, it may
be desirable. If we choose abstract interpretations
for our model, using user defined enumerations,
our projected models will be smaller, and more
amenable to analysis.

Class diagrams
A class is a description of a set of objects

that share the same attr ibutes, operations,
relationships, and semantics. In a class diagram,
each class is drawn as a rectangle with three
compartments: the top compartment holds the class
name, the middle holds a list of attributes; the bottom
holds a list of operations.

In our profile, attributes may be observable:
the values of observable attributes may be inspected
at any point during a test. By default, attributes are
not observable: we indicate that they are by adding
a tag.

Operations may also be observable, in that
the occurrence of the operation (and any return
value) will be recorded in any projected model.
Furthermore, they may be controllable, indicating
that they may be called from outside the system
during a test; we may use another tag to indicate
this.

We use associations in place of data
attributes of class type. In a class diagram, an
association is represented as a solid line between
classes. Associations may be annotated with roles
an attribute name at one end reveals the (formal)
name used for an object of the closer class, within
the context of an object of the other class.

Prasanth et al., Orient. J. Comp. Sci. & Technol., Vol. 1(2), 107-116 (2008) 109

Object diagrams
An object diagram shows the state of the

system at a certain point in time, as a collection of
objects, each in a particular state. We will use object
diagrams to describe the initial configuration of the
system model, to specify a starting configuration in
a test directive, and to flag configurations for
inclusion or exclusion in a projected model.

The object diagram notation is similar to
the class notation, although there are now only two
compartments to each rectangle. The state of an
object may be constrained using an assertion, a
state name from the corresponding state diagram
see below, or by constraining the values of its
attributes.

The presence of a link between objects
indicates that communication is possible:
• call actions in one object can produce call

events in the other;
• send actions in one object can produce signal

events in the other.

A link may be decorated with information
about roles: an attribute name at one end of a link
reveals the name used, within the context of the
closer object, for the object at the other end.

The role of the object diagram itself is
indicated using a stereotype:

• <<initial>>: the initial state of the system model;
• <<start>>: the start state of the projected model;
• <<finish>>: a finish state for testing;
• <<include>>: a state to be included in tests;
• <<exclude>>: a state to be excluded.

State diagrams
A state diagram shows how an object will

react to the arrival of an event. Each reaction may
be a sequence of actions, possibly accompanied
by a transition from one named state to another. An
event represents the receipt of a signal, or the effect
of an operation call. An action represents the
sending of a signal, or the call of an operation.

In a diagram, each state is represented by
a rectangle with rounded corners. To simplify the

presentation, we may factor some of the transition
information into the rectangles:
• actions that are common to every incoming

transition may be included as entry actions
for that state;

• actions that are common to every outgoing
transition may be included as exit actions.

If the only transition(s) that do not mention
a particular action are self-transitions, then we may
make these internal transitions, and proceed with
the factorization.

Each internal transition is represented by
the name of an event, followed by an action
expression. An optional guard-a Boolean-valued
expression-tells us whether a particular occurrence
of the event should trigger the specified actions-if it
is false, then the fact that the event has occurred is
simply forgotten. In general, the event must actually
occur for the guard to be evaluated-value of the
guard may depend upon the values of attributes in
the event.

A transition may be annotated with an
event, a guard, and an action expression. The
transition begins, or fires, with the occurrence of the
trigger event. If there is a guard, it is evaluated before
the action list is considered-should it prove to be
false, no change in state will take place; in a sense,
the transition is cancelled.

If there is no guard, or if the guard is true,
then the exit actions of the source state are
performed, followed by the actions of the transition
itself, and then, finally, the entry actions of the target
state.

 event2 / actionD

 initial state
 event3[guard] / actionG
 event 4 simple state

sequential
composite final state
state

 event 5

State 1
entry / actionA
exit / actionB
event1 / actionC

State 2
entry / actionE
exit / actionF

Stage 3

Fig. 2: A UML state diagram

110 Prasanth et al., Orient. J. Comp. Sci. & Technol., Vol. 1(2), 107-116 (2008)

The state diagram shown in Figure 2 tells
us that the corresponding object starts in State 1,
and can move from State 1 to State 2 whenever
‘event2’ occurs: the sequence of actions ‘actionB;
actionD; actionE’ is associated with this move.

On the other hand, if ‘event3’ were to occur
while the object was in State 1, then the transition
to (composite) State 3 will occur only if the
expression ‘guard’ is true. The value of ‘guard’ may
depend upon the values of attributes of the event,
as well as those of attributes of the current object.
If two outgoing transitions are enabled at the same
time-either because they are both labelled with the
same event, or because neither requires an event,
and both guards are true-then either may fire. State
diagrams cope easily with the phenomenon of
nondeterminism.

There is no need to stereotype the state
diagrams used to define the system model: these
will have the corresponding class as a classifier.
However, we will label any state diagram that forms
part of a test directive with the stereotype <<test>>.

Actions
A call action is an action in which a

stimulus-a call event-is created that can trigger an
action sequence in another object. Call actions are
synchronous: the caller waits for the event to be
processed before resuming execution. A call action
may have a return value: if this is the case, we insist
that it is immediately assigned to a named variable.

A send action also creates a stimulus-this
time, a signal event. Send actions are asynchronous:
the caller proceeds without waiting for the event to
be processed. An object can send a signal event to
any object for which it has a reference, including
itself. A send action has no return value.

Send actions need not correspond to
operations in the receiving object. This means that
we require a class diagram to explain the structure
of signal events (the structure of a call event is
already described by the signature of the
corresponding operation, given in the main class
diagram).

In this class diagram, we may include a

tag in each name compartment to indicate whether
these events are observable or controllable-can be
sent by the environment. To indicate that these are
classes of signal events, we label each class with
the stereotype <<signal>>.

Both send and call actions begin with the
name of the target object, which must be within the
scope of the state diagram. It could be one of the
declared attribute names, but it is more likely to be
a role name, at the far end of a link or association.

In the case of an object diagram, the role
name is not needed to identify the callee object
unless the object has been left anonymous, or is
known by a different name inside the state diagram
of the current object. Role names are not needed in
class diagrams unless the object performing a
particular role can be created during the test phase-
in this case, it can’t be named in the initial object
diagram.

Only call actions (and call events) can form
part of a test-provided that the corresponding
operations are controllable or observable.
Nevertheless, send actions (and signal events) may
be used in test directives, as well as in the main
model of the system.

Processing
Any tool used to create or edit UML models

should be capable of exporting these models-as a
complete project-in XMI. We may process this XMI, in
a number of stages, to produce compiler-ready XML.

Extraction
An XMI document need not represent a

complete project: many classes may be mentioned
but not defined; action expressions may be informal,
or contain syntactic errors; some classes may be
missing state diagrams. It may also contain
information that is irrelevant to the chosen test
directive.

The first stage of processing is to extract
the relevant information from the XMI document, and
check it for consistency and completeness. Whether
or not a particular piece of information is relevant
can be determined by inspecting the object
diagrams-of the system model and the test directive.

Prasanth et al., Orient. J. Comp. Sci. & Technol., Vol. 1(2), 107-116 (2008) 111

This aspect of the processing task can be
characterized using a meta-model for the output
format: compiler-ready XML. In the current,
prototypical version of the architecture, it is carried
out by a Java program, using standard DOM
(Document Object Model) libraries.

Transformation
Our test directive may contain object

diagrams that are intended to exclude specific
configurations or states. For each of these diagrams,
we may apply a simple transformation to the state
diagrams in the XML document.

An <<exclude>> object diagram will
describe a configuration to be avoided in terms of
the states of various objects. We may rewrite the
state diagrams for these objects to render these
states inaccessible. In each diagram, this will entail
the removal of one or more states, along with the
associated transitions.

The result is a projection of the system
model in which the specified states are never
explored; none of the tests that are subsequently
generated will involve visits to these states.

If we wish to include particular states in
our tests, then we may wish to detect, externally,
that these states have been reached-we may then
discard any test that does not do this. Furthermore,
we may wish to add a controllable operation that
takes the system into such a state.

Working from <<include>> object
diagrams, we may wish to add transitions to the state
diagrams of the model. These represent observable
events and controllable operations in a testing
interface.

Finally, we may wish to insist that each test
produced ends with the system in a particular
configuration. Working from a <<finish>> object
diagram, we may add an observable event to detect
this configuration.

The transformations described here are
merely examples of what can be achieved. If our
focus were animation, or verification, of the model,
then we would not wish to exclude states in this

fashion; however, we may wish to apply a more
complex transformation that achieves abstraction
or
encapsulation

Each of the transformations may be
implemented as a separate program in Java, or any
other language; we may then pipe these programs
together to produce a processing pipeline, taking
the exported XMI representation to compiler-ready
XML: see Fig. 3.

At any stage, up to compilation, the XML
representation can be transformed back to XMI,
using a transformer written in XSLT, allowing visual
inspection in any UML tool.

Compilation
The Intermediate Format (IF) language

was developed to sit between high-level specification
languages, such as LOTOS², and tool-specific
internal representations. IF representations can be
passed between tools, and translated into other
languages: for example, users of the CADP toolset6

can analyse their models using the SPIN model-
checker¹².

In IF, each of the objects in our
specification is represented as an extended finite
state machine, or process. The state of each
process-the values of local variables-is private;
processes evolve and communicate by sending and
receiving signals along specified signal routes.

export

.

 extract

 compile

transform

System model
UML

System model
XML

Projected model

IF

System model

XML

Fig. 3: The processing pipeline

Prasanth et al., Orient. J. Comp. Sci. & Technol., Vol. 1(2), 107-116 (2008)112

A signal route can be reliable or lossy, peer-
to-peer or multicast, FIFO or multiset, timely or
delayed. At present, we consider only reliable, peer-
to-peer communication between objects, but there
is considerable potential within the language, and
hence the architecture, for alternative abstractions.
As in UML, the arrival of a signal may trigger a
transition between states, accompanied by a
specified sequence of actions. This sequence may
involve sending signals to other processes, or
changing the values of local variables.

The process of compilation from XML to
IF revolves around the state diagrams of our model;
each of these will be transformed into an IF process.
The initial (or start) object diagram for the model (or
test) defines the initial configuration of processes.
The class diagram provides information about data
types and operations.

The translation into IF defines an effective
semantics for the UML language of state diagrams.
We need to define:
• an IF signal for each operation;
• an acknowledgement signal, including a

return value parameter, for each
synchronous operation;

• a process for each object in the model;
• a communication buffer for each object.

States
Each state in a state diagram is translated

into an IF control state, with stability and initiality
attributes. If a state is marked as unstable, then any
transaction through this state-a transition to, and a
transition from-is treated as atomic, across the
system. If a state is marked as initial, then it is treated
as an initial state of the process.

A start state in a state diagram becomes
an :init state in IF; a finish state becomes a state
with no transitions. To translate a simple state, we
append the entry actions to every incoming
transition; prepend the exit actions to every outgoing
transition; transform any internal transition into an
external, self transition, but without entry or exit
actions.

Transitions
Having mapped the object states into IF,

we can construct a transition in IF for each transition
in the state diagram:

from currentState
input operationName from thisBuffer
if guard
do action ;
[output ack(returnValue) to callerBuffer]
to newState

The output clause is used only in response
to synchronous operations, modeled as call actions.

Events
A call event represents an operation

invocation in which the caller will be notified of
completion, and provided with any return value. We
translate call events into IF signal inputs:

input operation-name (reference-list)
from buffer

where operation-name is an operation of
the current object; reference-list is a list of variables
in which the received parameters are stored, buffer
the name of the buffer from which the event will be
read.

To achieve synchronisation with the caller
object, we add a symmetrical action after every
signal input representing a call event, sending an
appropriate completion or return signal to the caller.
A signal event represents the reception of a UML
signal-used to model asynchronous communication.
We translate signal events directly into IF signal
inputs: input signal (reference-list) from buffer but
this time there is no matching acknowledgement
action.

Guards
These are translated into post guarded

inputs where the received parameters can be tested;
this guard is evaluated after the input is done and, if
false, the execution of the transition is disabled,
restricting the values that the process is willing to
accept. In our modeling language, guards will be
expressed by IF expressions.

Actions
To translate a call action, we must add an

Prasanth et al., Orient. J. Comp. Sci. & Technol., Vol. 1(2), 107-116 (2008) 113

additional, stable state to the IF representation of
the object. This is the state in which the object has
issued the call, but the operation has yet to return. If
the state diagram has a transition from State1 to
State2, labelled with call action a, then we obtain
an IF representation of the form

from State1
input event from callerBuffer
if guard
do action ;
to StateX

from StateX
input ack_a from calleeBuffer
to State2

Each send action becomes an IF output:

output signal(parameters) to targetBuffer

This has the effect of appending the
specified signal to the buffer associated with the
target object.

DISCUSSION

The work described here is still in progress.
An architecture has been defined, and a software
tool has been constructed to convert exported XMI
projects into compiler-ready XML descriptions. The
compiler itself has yet to be written; all of the
examples used thus far have been translated-from
UML directly into IF-by hand.

Although most industry testing of complex
software is conducted at the system level, most
formal research has focused on the unit level. As a
result, most system level testing techniques are only
described informally. This paper presents a novel
technique that adapts pre-defined state-based
specification test data generation criteria to generate
test cases from UML state charts. UML state charts
provide a solid basis for test generation in a form
that can be easily manipulated. This technique
includes coverage criteria that enable highly effective
tests to be developed. To demonstrate this technique,
a tool has been developed that uses UML state
charts produced by Rational Software Corporation’s
Rational Rose tool to generate test data.

Experimental results from using this tool are
presented.

There is an increasing need for effective
testing of software for complex safety-critical
applications, such as avionics, medical, and other
control systems. These software systems usually
have clear high level descriptions, sometimes in
formal representations. Unfortunately, most system
level testing techniques are only described
informally. This paper is part of a project that is
attempting to provide a solid foundation for
generating tests from system level software
specifications via new coverage criteria. Formal
coverage criteria over testers ways to decide what
test inputs to use during testing.

Using UML
The use of UML as the language of models

and test directives has significant advantages:
• the graphical notations are familiar and

accessible to most software engineers;
• a large number of tools exist for creating and

editing models.

It has also significant disadvantages:
• the semantics of communication within UML

is only partially defined;
• the language provides features that can be

used to create models of deceptive
complexity.

We have dealt with the first of these by
defining a semantics for the action–event
mechanism; one that can be used to model both
synchronous and asynchronous communication.
The second is harder to deal with; we need to assess
the value of each language feature.

Run to completion A state diagram accepts
events one at a time. Subsequent events will be
blocked until the current sequence of actions has
been completed, and all active regions have reached
the next stable state. This property is called the run
to completion assumption, and it has implications
for our use of the notation.

If an action represents a synchronous
operation call, then the intention is that it should not
complete until the corresponding event has been

Prasanth et al., Orient. J. Comp. Sci. & Technol., Vol. 1(2), 107-116 (2008)114

processed. If two objects (or a cycle of objects) are
able to call synchronous operations on each other,
then a deadlock may result: each object is unable
to complete its current action until the next accepts
an event; in the meantime, it cannot accept an event
itself. If an action represents an operation call on
the current object, then this cannot be regarded as
a synchronous operation for the purposes of the
event mechanism, or deadlock would be immediate.
It may be asynchronous, but the results may be
unexpected: the actions associated with the call will
be postponed until the current sequence of actions
has been completed.

The task of modeling concurrent behaviour
purely in UML-without the assistance of a suitable
formal semantics-is made more difficult by flexibility
in the language definition. The relationship between
an action and the corresponding event is left as a
semantic variation point.

Composite states In the state diagram
notation, states may be included in other states.
Indeed, every state in the diagram is included in a
single, outermost state. A state that includes others
is said to be composite; a composite state defines
a region of the state diagram, a fact that has
semantic importance when we come to consider the
arrival of events.

There are two kinds of composite state. A
sequential composite state defines a region with a
single flow of control; a concurrent composite state
defines two or more regions, each of which is itself
a sequential composite state. The concurrency in
such a state is limited to the performance of actions:
if an event is processed that triggers transitions in
more than one regions, then the sequences of
actions from each region may be arbitrar ily
interleaved.

At present, the translation to IF does not
exploit the composite state mechanism; every state
in the diagram is included explicitly in the IF process.
The forthcoming version of the IF language adds
support for substate processes; we may therefore
hope to reduce the complexity of our projected
model by encapsulating states.

However, in UML notation, a transition

arrow may be drawn between any pair of states in
the diagram. We may cross boundaries between
regions, entering or leaving a series of composite
states. This flexibility may be superficially attractive,
but greatly increases the potential for confusion. It
also prevents the use of composite states as an
encapsulation mechanism.

Deferred events In state diagrams, simple
or composite states may be associated with an
additional attribute, a set of deferred events. If a
deferred event occurs, then it is placed in a local
queue-one that cannot be accessed outside the
current region of the state diagram; it will occur again
immediately after the next external transition.

If an event outside the deferral set occurs,
and no transition of the current state is associated
with it, then it will be ignored. The effect is exactly
the same as if the event had occurred, but the
corresponding guard was false: the event is
processed-removed from the input queue, but no
actions are performed; neither is there any change
in state. If deferred events are used with composite
states, then the resulting model will be too complex
for use in test generation. Each region has its own
queue of deferred events, and this queue must be
checked, and filtered, at each transition. This
problem is compounded in the presence of boundary
crossing transitions.

Related work
The prospect of some degree of

automation in the testing process is clearly an
attractive one. Computing is becoming more
pervasive, and more critical to our lives; at the same
time, designs are becoming more complex, and
interactions between components are becoming
harder to measure and predict. Software testing is
becoming more difficult, and more expensive.

A considerable amount of research has
been carried out into the application of Finite State
Machine (FSM) notations to testing, and test
generation, particularly with regard to the testing of
communicating systems17,15. This research solves
fundamental problems in testing, but does not
attempt to address the problems of scale and
complexity encountered in modern software
engineering.

Prasanth et al., Orient. J. Comp. Sci. & Technol., Vol. 1(2), 107-116 (2008) 115

Other research, from theories of testing
for State-Charts¹¹ and methods for behavioural
model generation4, through to toolkits for automated
testing8, and packages for generating input
sequences for testing user interfaces14, has taken
a more pragmatic, industrial approach. Of these,
only one8 presents an architecture: a precursor to
that adopted for the AGEDIS project.

There are several reports of success in
automated test case generation. One of the
examples5 includes the comment:

However, questions remained about the
scalability of the approach. . . A state-machine based
approach. would perhaps be more appropriate.

The focus of our research is exactly this:
we are working towards scalable methods for
automated test generation, using object-oriented
principles, and building on fundamental research
from the world of finite state machines.

ACKNOWLEDGMENTS

The authors would like to acknowledge the
support of the EU AGEDIS project (AGEDIS 1999-
20218)-and, in particular, the contributions of
Laurent Mounier, Thierry Juron, YvesMarie
Quemener, Alan Hartman, and Ken Nagin—and the
support of IBM, through their Faculty Partnership
Program.

1. M. Bozga, J. Cl, F. Ghirvu, S. Graf, J. Krimm,
L. Mounier, and J. Sifakis. IF: an intermediate
representation for SDL and its applications.
In SDL FORUM 99 (1999).

2. Ed Brinksma and Tommaso Bolognesi.
Introduction to the ISO specification language
LOTOS. Computer Networks and ISDN
Systems, 1987.

3. Rational Software Corporation. Rational
Rose. June 2001, http://www.rational.com.

4. Ibrahim Khalil Ibrahim El-Far. Automated
construction of software behavior models.
Master’s thesis, American University of
Beirut, 1995. http://se.it.edu/ielfar/thesis.pdf.

5. M. S. Feather and B. Smith. Automatic
generation of test oracles-from pilot studies
to application. Automated Software
Engineering, 8(1): 31-61 (2001).

6. J. Fernandez, H. Garavel, A. Kerbrat, R.
Mateescu, L. Mounier, and M. Sighireanu.
CADP: A protocol validation and verification
toolbox. In CAV ’96: 8th Conference on
Computer-Aided Verification, (1996).

7. Jean-Claude Fernandez, Claude Jard,
Thierry Jeron, and Cesar Viho. An experiment
in automatic generation of test suites for
protocols with verification technology.
Science of Computer Programming, 1997.

citeseer.nj.nec.com/2326.html.
8. I. Gronau, A. Hartman, A. Kirshin, K. Nagin,

and S. Olvovsky. A methodology and
architecture for automated software testing.
ht tp: / /www.haifa. i l . ibm.com/projects/
verification/gtcb/papers/gtcbmanda.pdf,
2000.

9. Object Management Group. OMG XML
Metadata Interchange (XMI) specification,
version 1.1, November 2000. http://
www.omg.org/cgi-bin/doc?formal/2000-11-
02.

10. Object Management Group. Unified Modeling
Language (UML) 1.4 draft, February 2001. http:/
/www.omg.org/cgi-bin/doc?ad/2001-02-13.

11. David Harel and Eran Gery. Executable object
modeling with statecharts. In Proceedings of
the 18th International Conference on
Software Engineering. IEEE Computer
Society Press, 1996.

12. Gerard J. Holzmann. The model checker
SPIN. Transactions on Software Engineering,
1997.seer.nj.nec.comholzmann97model.html.

13. The AGEDIS project, 2000. “http://
www.agedis.de”.

14. S. Rosaria and H. Robinson. Applying models
in your testing process. Information and
Software Technology (2000).

REFERENCES

Prasanth et al., Orient. J. Comp. Sci. & Technol., Vol. 1(2), 107-116 (2008)116

