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ABSTRACT:

In this paper, we suggest and discuss an iterative method for solving nonlinear equations
of the type f(x) = 0 having eighteenth order convergence. This new technique based on Newton’s
method and extrapolated Newton’s method. This method is compared with the existing ones through

some numerical examples to exhibit its superiority.
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INTRODUCTION

We consider finding the zero’s of a
nonlinear equation
f(x)=0 .(1.1)
Where f: D c R — Risascalar function
on an open interval D and f(x) may be algebraic,
transcendental or combined of both. The most
widely used algorithm for solving (1.1) by the use
of value of the function and its derivative is the well
known quadratic convergent Newton’s method (NM)

given by
S ()

I (xn)

an =Xy ..(1.2)

(n=0,1,2,...)

starting with an initial guess x, which is in
the vicinity of the exact root x*. The efficiency index
of Newton’s method is 2/2 = 1.4142 -

The Extrapolated Newton’s method (ENM)
suggested by V.B.Kumar, Vatti et.al "' which is
developed by extrapolating Newton’s method (1.2)
introducing a parameter ‘o’ given by

X1 =(1—ocn)xn "‘Ocn{xn -

S )
7(in) .(1.3)

=X, 1= Xn %

+1

(n=0,1,2,...)
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Here, the optimal choice for the parameter

o0,’is

o = 2 ...(1.4)

"o- Pn
Where o _ S ()" (en) ...(1.5)
2
[f,(xn )]

Combining (1.3), (1.4) and (1.5), one can

have

_SGm), !
S G
Z[f’(xn)]

n+1 =t f'(xn)

..(1.6)

(n=0,1,2,...)

Which is same as Halley’s method having
third order convergence requires three functional
evaluations. The efficiency index of this method is

3 =1.4422.

A three step Predictor-corrector Newton’s
Halley method (PCNH) suggested by Mohammed
and Hafiz '°(see[1 to 10]), is given by:

For a given x,, we compute x by using
v f ()
Wy =Xy f'(xn)
2 ) ()
Yn=Wn - T -
2L ()] = S (o )S” (o)
Y =y f(n) _[f(J’n)]zf”(yn)
n+l =Vn ' , 3
SOm) 2Ly ()]
(n=0,1,2,...)

(1.7)

This method has eighteenth order
convergence and its efficiency index is

818 =1.4352

In section 2, we develop and discuss a
three step iterative method and the convergence
criteria is discussed in section 3. Few numerical
examples are considered to show the superiority
of this method in the concluding section.

Eighteenth Order Convergent Method (Eocm)

Consider x* be the exact root of (1.1) in
an open interval D in which f(x) is continuous and
has well defined first and second derivatives. Let x_
be the n approximate to the exact root x* of (1.1)
and

x* =X, tey ..(2.1)
where is the error at the n' stage.
Therefore, we have

f(x* )= 0

Expanding by Taylor’'s series about, we

(2.2)

have
/(x ):f(in)Jr(xz _x”)f'(x”) (2.3)
+—(x —xn) " (e )+

2
f(x*):f(xn)+enf,(xn)Jrean”(xn)J“ -
..(2.4)
Assuming e, is small enough anf

neglecting higher powers of ¢;, starting from ey
onwards, we obtain from (2.2) and (2.4) as

e " (e )+ 2enf" (6 )+ 21 (0 )= 0

= e =[ 21" ()£ Con) =87 )" Con) /217 (o)
R f(xn )f”(xn)

Where p = ...(2.5)
[f'(xn)]
o o LG 14126 [ 14125 |
A CO BTN Ty
e o Zf(xn){ ! } ..(2.6)
F'Gp) | 1+41-2p

Replacing x* by X441 in (2.1) and from
(2.5) &(2.6), we obtain
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X1 =% _Zf(xn). 1
nt & f, x}’l "
L [T
FACD]

(2.7)

This scheme (2.7) allows us to propose the
following algorithm with the method (1.2) as the first
step and the method (1.6) as the second step.

Algorithm 2.1: For a given XO, compute X
by the iterative schemes

— S (Gn) .(2.8)
Wn =Xp Iz (Xn)

f(w,,)[ 1 } (2.9)

T ) 1= 62
/ (Wn )f " (Wn)

n+l

Where fsn = 3 ...(2.10)
[f'(wn )}
. 2/ (vn) 1
X 1= In Ten TS .(2.11)
(n=0,1,2,..)
Where p,, = S Gn)I"n) (2.12)

o))

This algorithm (2.1) requires 3 functional
evaluations, 3 of its first derivatives and 2 of its
second derivatives and can be called as Eighteenth
order Convergent Method (EOCM).

Convergence Criteria
Theorem 3.1. Let x* € D be a single zero of a

sufficiently differentiable function f: Dc R — R
for an open interval D. If x;is in the vicinity of x*,
then the algorithm (2.1) has eighteenth order
convergence.

Proof: Let x* be a single zero of (1.1) and

xt=x, +e, ..(3.1)

Then, f(x* ): 0 .(3.2)

If x, be the n"" approximate to the root
of (1.1), then expandingf(xn) about x* using
Taylor’'s expansion, we have

f(xn):f(X*)*enf'(X*)
TrCYEC) e

) 216 S
) )"
QNN

)

= f’(x*Ien +Czen2 -l—c?’en3 +c4en4+...]

nt

:f'(x*

f(xn)

1
+7
41

.(3.3)
Where
J
¢ - L.t /() (j=2.3.4,..)
D)

And,

f'(xn):f'(x*jl+2czen+3c3en2+4c4en3+...]
...(3.4)

Now,

JJ:(();’;))_ ep —CyHe 2 (ZC -2c 2}3

(30 —7c +4c 3)2 +0(en )

From (2.8), (3.1) and (3.5), we have
Wy, = x4 czen2 + (203 - 2022 )?n3
3 4 5
+(30 —T7cAc, +4c )z +0(e ]
4 23 2 ") (36

Let W =w, — X" ..(8.7)
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Then,expanding f(Wn ), f((Wn ), 1" (Wn)
about X* by using (3.6), we obtain

FCm)=1 (x*)+(wn =3 )f’(x*)
e gy e gy

.(38)

:f'Q IW+C2W2+C3W3 +c4W4+---} .(39)

5 On)= £ @ Y G =" Y ()
(=)

+Tf”’66 )* ...(3.10)

Combining (3.6) to (3.10) as done in [10]
and from (2.9), we obtain

yn:x*+T

where T = (622 —c )/V3

Now.expanding (v, ), /" (vn ), /" (¥n)
about X* by using (3.11), we obtain
f(yn): f'(x*ITﬂ:ZTZ +c3T3 +c4T4 +}
...(3.13)

.(3.11)

..(3.12)

£'(vn)= f'(x* Il+202T+3c3T2 e, T3+ 5esT
(3.14

5 +6e;T+12¢ 72

" 4
S"Cn)= f( 3 4,
420657 +30¢,T

6
and _ f()’n )f”(J’n)
Pn=—""—" "5
[f'(J’n )]

~ ZczT + 6‘;03 +2c22 )‘2 +(l 254 +8c2c3 )T3 + (2005 +l402c4 + 6032 )7'4 +
1=4c,T+ (12022 —6c3 )‘2 + (360203 - 32(?23 8¢y )T3 + (366203 - 32623 8¢y )T3

+(80(,‘24*144C22C3 +48cycy + 27032 - 1005 )1'4 +..

..(3.15)

—PT+PT2+PT3+P,T*+

_ 2
where, P 2c2 2_—6(:2 +6c3,

P :16023 —28¢cAHc

3 pc3 +12¢y,

2

4
—40c, " —50c,c 3

_ 2
100c~“c 2 2C4

4 - 273
Now,

— R, R
1*2pn:1*P1T+ 777P2 T<+ —1’3—PIP277 T

-30¢,“ +20c

5

2
P
3 2 3,2, 5,44
+{‘P4‘ , hB—3 A h5h ]T *
(3.17)
and,
2 3
O 1 N 0 e B B O 0 T
2 4 2 2 2 4
1+4/1-2p, =2

1+ 1-2p,, :2[1+M1T+M2T2+M3T3+M4T4+
) .(3.18)
h =— = _
where, M1 Cy> M2 2(:2 3c3,

_ 3
M3 ——4c2 +8023 604,

_ 4.2 4 2.2
M4— 4c2 c3+402 +1302c4 303
—10c5
Now again,

O IIMT+Q\4 My Y2 MMy - My -1 )
[1i=20] - {(M 2eom M, - M, -3M2M, +M4)'4
[1+1/172pn]_l:%[1+N1T+N2T2+N3T3+N4T4+...]

.(3.19)
_ _ .2
Where, N1 —02 N2— €y +3c3,
_.3_
N3 =¢y 20203+6c4,

_ 2 4 2
N4 ——15c2 c3+3c2 —czc4+l2c3 +1005
From (3.13) and (3.14), we obtain
() 2 2 3
f'(yn):T_czT +(202 —203)" +
(76263 —46‘23 —3c4 )Tn4 +0(T5) ...(3.20)
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From (3.19) and (3.20), we obtain

;(J’n)[ Tl 7T+[ o2

5 +2¢, —203}T3

ZCB}JT cofr?)

+[N2

oy ey
- 4c —3c

2
Ny=Nye, + Ny (2e,” -2

T+[O]T2+[C3JT3+{ 370

3
+762L’3 - 462 - 304

63)17,,4“)(75)
.(321)

Combining (3.13) to (3.21) and from (2.11),
we obtain

—x 4T —|T+e,T3
xn+1—x + —|: +C3 +:|

_ X 3
=X —c3T +

S[E2 -y T
e, €l :c3(622—c3jW9+
€= 3(czz—c3j[c2en2+(2c3—2c22)en3}9+...
) (2 - j +0(e"19)...(3.22)

Hence, this method has eighteenth
order convergence and its efficiency index is

818 =1.4352.

Case 3.1: By expanding /1_2pn appearing in
the denominator of the third step of algorithm 2.1,
we obtain

=y _2f(yn). 1
n+l —on ' 2 3
I'On) |5 _Pi_Pa
{2 Pn 2 ;}
S (On) Pn’ . 5Pn’
= B B

...(3.23)

where py, is as given in (2.12).

Considering the first degree and second
degree terms of the expression lying within the
square brackets of the formula (3.23) and from
the algorithm 2.1, we have the following two more
algorithms.

Algorithm 3.1: For a given, compute by the iterative

schemes

SR C))

n n f,(xn)
R o

o (Wn) -p,/2

S (wn )" (W)

Where Py = 3
[f'(wn )}
- o) _[FO] £ Gn)
n+ n 7'(m) 2[f’(yn)]3
(n=0,1,2,...)

which is same as the eighteenth order
convergent method proposed by Mohammed and
Hafiz °.

Algorithm 3.2: For a given X,,, compute X,
the iterative schemes

+1b

. f (%n)
Wn = xn f'(xn)
]
" " f'(wn) l_pn/2
Where - =Mf"(v;n)
[f’(wn )]
SO [Pl Om)_[1ea) ()]
TG0 2 )] 2o 1)

As done in convergence criteria above
in section 3, one can easily obtain.Therefore,
the algorithm (3.2) has eighteenth order
convergence.
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Numerical Examples PYTHON software programming and comparison
We consider the same examples of number of iterations for these methods are
considered by Mohammed and Hafiz'® and obtained such that |x —x <107" and
i -201
compared EOCM with NM and PCNH methods. |f(xn+11 <107

The computations are carried out by using mpmath-

Table 1: Comparison of different methods

Method Initial The equation /' (x)=0 and its root by No.of |x  —x |f(xn+lj
Guess respective methods iterations
%o
1 f(x):x3+4x2—10
NM 1.3652300134140968457608068289816660783311647467 10 3.43E-200 -5.75E-199
PCNH 1.3652300134140968457608068289816660783311647467 5 -3.27E-201 -5.75E-199
EOCM 1.3652300134140968457608068289816660783311647467 3 -3.27E-201 1.07E-198
1.3 f(x)=sin®x—x*+1
NM 1.4044916482153412260350868177868680771766025759 9 6.86E-200 1.72E-199
PCNH 1.4044916482153412260350868177868680771766025759 4 -6.53E-201 -7.67E-200
EOCM 1.4044916482153412260350868177868680771766025759 3 9.31E-200 -7.67E-200
2 f(x)zxz—ex—3x+2
NM 0.2575302854398607604553673049372417813845369934 9 8.2E-202 -3.2E-201
PCNH 0.2575302854398607604553673049372417813845369934 4 2.45E-201 -3.27E-201
EOCM 0.2575302854398607604553673049372417813845369934 4 2.45E-201 -3.27E-201
-4 f(x)zxz—ex—3x+2
NM 0.2575302854398607604553673049372417813845369934 11 8.2E-202 -3.3E-201
PCNH 0.2575302854398607604553673049372417813845369934 5 2.45E-201 -3.27E-201
EOCM 0.2575302854398607604553673049372417813845369934 4 2.45E-201 -3.27E-201
1.7 f(x)=cosx—x
NM 0.7390851332151606416553120876738734040134117589 9 1.63E-201 2.45E-201
PCNH 0.7390851332151606416553120876738734040134117589 4 -4.9E-201 2.45E-201
EOCM 0.7390851332151606416553120876738734040134117589 3 -4.9E-201 2.45E-201
25 f()=(=1) =1
NM 2.0 10 0 0
PCNH 2.0 4 0 0
EOCM 2.0 4 0 0
2 f (x) =x"-10
NM 2.1544346900318837217592935665193504952593449421 9 1.63E-200 -2.1E-199
PCNH 2.1544346900318837217592935665193504952593449421 4 -4.9E-200 -2.1E-199

EOCM 2.1544346900318837217592935665193504952593449421 3 -4.9E-200 -2.1E-199
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The above computational results exhibit

the superiority of the new method EOCM over the
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