
INTRODUCTION

GA's were introduced as a computational
analogy of adaptive systems. They are modeled
loosely on the principles of the evolution via natural
selection, employing a population of individuals that
undergo selection in the presence of variation-
inducing operators such as mutation and
recombination (crossover). A fitness function is used
to evaluate individuals, and reproductive success
varies with fitness. The Algorithms.

Oriental Journal of Computer Science & Technology Vol. 1(2), 137-141 (2008)

Coping and limitations of genetic algorithms

A. VENKATESWARA RAO¹*, G.A.V.RAMACHANDRA RAO¹ and
MANDAVA V. BASAVESWARA RAO²

¹Noble Institute of Science and Technology, Visakhapatnam (India).
²Sadineni Chowdaraiah College of Arts $ Science, Maddirala, Chilakaluripet, (India).

(Received: October 25, 2008; Accepted: Decembe 07, 2008)

ABSTRACT

Genetic Algorithms (GA’s) are adaptive heuristic search algorithm premised on the evolutionary
ideas of natural selection and genetic. The basic concept of GA’s is designed to simulate processes in
natural system necessary for evolution, specifically those that follow the principles As such they represent
an intelligent exploitation of a random search within a defined search space to solve a problem. Genetic
Algorithms has been widely studied, experimented and applied in many fields in engineering worlds.
Not only does GA’s provide alternative methods to solving problem, it consistently outperforms other
traditional methods in most of the problems link. Many of the real world problems involved finding
optimal parameters, which might prove difficult for traditional methods but ideal for GA’s. However,
because of its outstanding performance in optimization, GA’s has been wrongly regarded as a function
optimizer. In fact, there are many ways to view genetic algorithms.
´ GA’s as problem solvers
´ GA’s as challenging technical puzzle
´ GA’s as basis for competent machine learning
´ GA’s as computational model of innovation and creativity
´ GA’s as computational model of other innovating systems
´ GA’s as guiding philosophy

However, due to various constraints, we would only be looking at GA’s as problem solvers
and competent machine learning here. We would also examine how GA’s is applied to completely
different fields.

Many scientists have tried to create living programs. These programs do not merely simulate
life but try to exhibit the behaviors and characteristics of real organisms in an attempt to exist as a
form of life.

Key words: Coping, Genetic algorithms.

´ Randomly generate an initial population M
(0)

´ Compute and save the fitness u (m) for each
individual m in the current population M (t)

´ Define selection probabilities p (m) for each
individual m in M (t) so that p (m) is
proportional to u (m)

´ Generate M (t+1) by probabilistically selecting
individuals from M (t) to produce offspring via
genetic operators

´ Repeat step 2 until satisfying solution is
obtained.

Who can benefit from GA
Nearly everyone can gain benefits from

Genetic Algorithms, once he can encode solutions
of a given problem to chromosomes in GA, and
compare the relative performance (fitness) of
solutions. An effective GA representation and
meaningful fitness evaluation are the keys of the
success in GA applications. The appeal of GA’s
comes from their simplicity and elegance as robust
search algorithms as well as from their power to
discover good solutions rapidly for difficult high-
dimensional problems. GA’s is useful and efficient
when
´ The search space is large, complex or poorly

understood.
´ Domain knowledge is scarce or expert

knowledge is difficult to encode to narrow the
search space.

´ No mathematical analysis is available.
´ Traditional search methods fail.

The advantage of the GA approach is the
ease with which it can handle arbitrary kinds of
constraints and objectives; all such things can be
handled as weighted components of the fitness
function, making it easy to adapt the GA scheduler
to the particular requirements of a very wide range
of possible overall objectives. GA’s have been used
for problem solving and for modeling. GA’s are
applied to many scientific, engineering problems, in
business and entertainment, including:

Optimization
GA’s have been used in a wide variety of

optimization tasks, including numerical optimization,
and combinatorial optimization problems such as
traveling salesman problem (TSP), circuit design,
job shop scheduling and video & sound quality
optimization.

Automatic Programming
GA’s have been used to evolve computer

programs for specific tasks, and to design other
computational structures, for example, cellular
automata and sorting networks.

Machine and robot learning
GA’s have been used for many machine-

learning applications, including classifications and
prediction, and protein structure prediction. GA’s

have also been used to design neural networks, to
evolve rules for learning classifier systems or
symbolic production systems, and to design and
control robots.

Economic models
GA’s have been used to model processes

of innovation, the development of bidding strategies,
and the emergence of economic markets.

Immune system models
GA’s have been used to model various

aspects of the natural immune system, including
somatic mutation during an individual’s lifetime and
the discovery of multi-gene families dur ing
evolutionary time.

Ecological models
GA’s have been used to model ecological

phenomena such as biological arms races, host-
parasite co-evolutions, symbiosis and resource flow
in ecologies.

Population genetics models
GA’s have been used to study questions

in population genetics, such as “under what
conditions will a gene for recombination are
evolutionarily viable?”

Interactions between evolution and learning
GA’s have been used to study how

individual learning and species evolution affect one
another.

Models of social systems
GA’s have been used to study evolutionary

aspects of social systems, such as the evolution of
cooperation the evolution of communication, and
trail-following behavior in ants.
Applications of Genetic Algorithms:
GA on optimization and planning

Example: - Traveling Salesman Problem:

The TSP is interesting not only from a
theoretical point of view, many practical applications
can be modeled as a traveling salesman problem
or as variants of it, for example, pen movement of a
plotter, drilling of printed circuit boards (PCB), real-
world routing of school buses, airlines, delivery

138 Rao et al., Orient. J. Comp. Sci. & Technol., Vol. 1(2), 137-141 (2008)

trucks and postal carriers. Researchers have tracked
TSP’s to study bimolecular pathways, to route a
computer networks’ parallel processing, to advance
cryptography, to determine the order of thousands
of exposures needed in X-ray crystallography and
to determine routes searching for forest fires (which
is a multiple-salesman problem partitioned into
single TSP’s). Therefore, there is a tremendous need
for algorithms.

In the last two decades an enormous
progress has been made with respect to solving
traveling salesman problems to optimality, which, of
course, is the ultimate goal of every researcher. One
of landmarks in the search for optimal solutions is a
3038-city problem. This progress is only party due
to the increasing hardware power of computers.
Above all, it was made possible by the development
of mathematical theory and of efficient algorithms.

There are strong relations between the
constraints of the problem, the representation
adopted and the genetic operators that can be used
with it. The goal of traveling Salesman Problem is to
devise a travel plan (a tour), which minimizes the
total distance traveled. TSP is NP-hard (NP stands
for non-deterministic polynomial time) - it is generally
believed cannot be solved (exactly) in time
polynomial. The TSP is constrained:
´ The salesman can only be in a city at any

time
´ Cities have to be visited once and only once.

Disadvantages
When GA’s applied to very large problems,

they fail in two aspects:
´ They scale rather poorly (in terms of time

complexity) as the number of cities increases.
´ The solution quality degrades rapidly

Failure of standard genetic algorithm
To use a standard GA, the following

problems have to be solved:
´ A binary representation for tours is found

such that it can be easily translated into a
chromosome.

´ An appropriate fitness function is designed,
taking the constraints into account.

Non-permutation matrices represent

unrealistic solutions, that is, the GA can generate
some chromosomes that do not represent valid
solutions. This happens in the random initialization
step of the GA’s a result of genetic operators
(mutation and crossover).

Thus, permutation matrices are used. Two
tours including the same cities in the same order
but with different starting points or different directions
are represented by different matrices and hence by
different chromosomes, for example:

tour (23541) = tour (12354)

A proper fitness function is obtained using
penalty-function method to enforce the constraints.

However, the ordinary genetic operators
generate too many invalid solutions, leading to poor
results. Alternative solutions to TSP require
new representations (Position Dependent
Representations) and new genetic operators.

Other applications
GA in Business and Their Supportive Role

in Decision Making:

Genetic Algorithms have been used to
solve many different types of business problems in
functional areas such as finance, marketing,
information systems, and production / operations.
Within these functional areas, GA’s have performed
a variety of applications such as tactical asset
allocation, job scheduling, machine-part grouping,
and computer network design.

Finance applications
Models for tactical asset allocation and

international equity strategies have been improved
with the use of GA’s. They repor t an 82%
improvement in cumulative portfolio value over a
passive benchmark model and a 48% improvement
over a non-GA model designed to improve over the
passive benchmark. Genetic algorithms are
particularly well suited for financial modeling
applications for three reasons:
´ They are payoff driven. Payoffs can be

improvements in predictive power or returns
over a benchmark. There is an excellent
match between the tool and the problems

Rao et al., Orient. J. Comp. Sci. & Technol., Vol. 1(2), 137-141 (2008) 139

addressed.
´ They are inherently quantitative, and well

suited to parameter optimization (unlike most
symbolic machine learning techniques).

´ They are robust, allowing a wide variety of
extensions and constraints that cannot be
accommodated in traditional methods.”

Information aystems applications
Distributed computer network topologies

are designed by a GA, using three different objective
functions to optimize network reliability parameters,
namely diameter, average distance, and computer
network reliability. The GA has successfully designed
networks with 100 order of nodes.

GA has also been used to determine file
allocation for a distributed system. The objective is
to maximize the programs’ abilities to reference the
file s located on remote nodes. The problem is solved
with the following three different constraint sets:
´ There is exactly one copy of each file to be

distributed.
´ There may be any number of copies of each

file subject to a finite memory constraint at
each node.

´ The number of copies and the amount of
memory are both limited.

Production/Operation applications
Genetic Algorithm has been used to

schedule jobs in a sequence dependent setup
environment for a minimal total tardiness. All jobs
are scheduled on a single machine; each job has a
processing time and a due date. The setup time of
each job is dependent upon the job, which
immediately precedes it. The GA is able to find good,
but not necessarily optimal schedules, fairly quickly.

GA is also used to schedule jobs in non-
sequence dependent setup environment. The jobs
are scheduled on one machine with the objective of
minimizing the total generally weighted penalty for
earliness or tardiness from the jobs’ due dates.
However, this does not guarantee that it will generate
optimal solutions for all schedules.

GA is developed for solving the machine-
component grouping problem required for cellular
manufacturing systems. GA provides a collection of

satisfactory solutions for a two objective environment
(minimizing cell load variation and minimizing
volume of inter cell movement), allowing the decision
maker to then select the best alternative.

Role in decision making
Applying the well-established decision

processing phase model of Simon (1960), Genetic
Algorithms appear to be very well suited for
supporting the design and choice phases of
decision-making. When solving multi-objective
problems, GA gives out many satisfactory solutions
in terms of the objectives, and then allows the
decision maker to select the best alternative.
Therefore GA’s assist with the design phase of
decision processing with multi-objective problems.

GA’s can be of great assistance for
examining alternatives since they are designed to
evaluate existing potential solutions as well to
generate new (and better) solutions for evaluation.
Thus GA’s can improve the quality of decision-
making.

Learning Robot behavior using genetic
algorithms

Robot has become such an prominent
tools that it has increasingly taken a more important
role in many different industries. As such, it has to
operate with great efficiency and accuracy. This may
not sound very difficult if the environment in which
the robot operates remain unchanged, since the
behaviors of the robot could be pre-programmed.
However, if the environment is ever changing, it gets
extremely difficult, if not impossible, for programmers
to figure out every possible behaviors of the robot.
Applying robot in a changing environment is not only
inevitable in modern technology, but is also
becoming more frequent. This has obviously led to
the development of a learning robot.

The approach to learning behaviors, which
lead the robot to its goal, described here reflects a
particular methodology for learning via simulation
model. The motivation is that making mistakes on
real system can be costly and dangerous. In addition,
time constraints may limit the extent of learning in
real world. Since learning requires experimenting
with behaviors that might occasionally produce
undesirable results if applied to real world. Therefore,

Rao et al., Orient. J. Comp. Sci. & Technol., Vol. 1(2), 137-141 (2008)140

as shown in the diagram, the current best behavior
can be place in the real, on-line system, while
learning continues in the off-line system.

Previous studies have shown that knowledge
learned under simulation is robust and might be
applicable to the real world if the simulation is more
general (add more noise and distortion). If this is
not possible, the differences between the real world
and the simulation have to be identified.
GA’s Role:

Genetic Algorithms are adaptive search
techniques that can learn high performance
knowledge structures. The genetic algorithms’
strength come from the implicitly parallel search of
the solution space that it performs via a population
of candidate solutions and this population is
manipulated in the simulation.

The candidate solutions represent every
possible behavior of the robot and based on the
overall performance of the candidates, each could
be assigned a fitness value. Genetic operators could
then be applied to improve the performance of the

population of behaviors. One cycle of testing all of
the competing behavior is defined as a generation,
and is repeated until a good behavior is evolved.
The good behavior is then applied to the real world.
Also because of the nature of GA, the initial
knowledge does not have to be very good.

CONCLUSION

Future work
The system described has been used to

learn behaviors for controlling simulate autonomous
underwater vehicles, missile evasion, and other
simulated tasks. Future work will continue examining
the process of building robotic system through
evolution. We want to know how multiple behaviors
that will be required for a higher-level task interact,
and how multiple behaviors can be evolved
simultaneously. We are also examining additional
ways to bias the learning both with initial rule sets,
and by modifying the rule sets during evolution
through human interaction. Other open problems
include how to evolve hierarchies of skills and how
to enable the robot to evolve new fitness functions
as the need for new skill arises.

1. Genetic Algorithms - by Colin R. Reeves,
Jonathan E. Rowe

REFERENCES

2. New Optimization Techniques in Engineering
- by Godfrey C. Onwubolu, B.V.Babu

Rao et al., Orient. J. Comp. Sci. & Technol., Vol. 1(2), 137-141 (2008) 141

