
INTRODUCTION

Here the two methods TCP old and TCP
Constant packet rearranging is compared .The main
idea behind retransmit packet this is to improve the
performance of TCP throughput by avoiding sender
to timeout. Using fast retransmit can continuously
improve the TCP’s performance in the presence of
irregular rearranging but it still operates under the
assumption of that out-of-order packet which
indicate the packet loss and which leads to
congestion. As a result its performance degrades
in the presence of constant rearranging. This is
procedure for rearranging both data and
acknowledgment packet. Packet rearranging is
generally attributed to transient conditions
pathological behavior and erroneous
implementation. As per the design format of the
TCP’s errors and congestion control mechanism
which is based on the principle that packet loss is
an indication of the network congestion. As per TCP

ORIENTAL JOURNAL OF
COMPUTER SCIENCE & TECHNOLOGY

www.computerscijournal.org

ISSN: 0974-6471
December 2011,

Vol. 4, No. (2):
Pgs. 447-450

An International Open Free Access, Peer Reviewed Research Journal

Packet Loss Detection Using Constant Packet Rearranging

ANKUR LAL, SIPI DUBEY and BHARAT PESSWANI

Computer Science and Engineering, RCET Bhilai (India).
*Corresponding author: E-mail: ankur.at.cit@gmail.com

(Received: August 12, 2011; Accepted: September 04, 2011)

ABSTRACT

When we rearrange the packet the most standard implementation of the TCP gives poor
performance. In this paper loss of packets in TCP is detected using two diverse methods CPR
(Constant Packet Re-arranging) and WCPR (Without Constant Packet Re-arranging). Constant
packet rearranging does not depend or rely on the duplicate acknowledgement to detect the
packet loss. Instead the timer is used to maintain how long packet is transmitted.

Key words: Packet rearranging, CPR, WCPR.

senders backs off transmission rate by decreasing
its congestion control windows. TCP uses two
strategies for the detection of the packet loss the
first one is based on the sender’s retransmission
timeout which is also referred as coarse timeout.
When the senders timeout which is responded by
the congestion control by slow start which leads
into decreasing congestion window to one segment.
The packet detection loss is detected at the receiver
side by using the sequence number. In this case
receiver checks the sequence number of received
packet. The hole in the sequence indicates that there
is loss of the packet in such case the receiver
generates the duplicate acknowledgement for every
“out-of-order” segment it receives. Until the lost
packet received, the entire reaming packet with
higher sequence number is consider as out of order
and will cause to creation of duplicates packets. After
that sender retransmit the lost packet without waiting
for timeout which helps to reduction of congestion
windows.

448 LAL et al., Orient. J. Comp. Sci. & Technol., Vol. 4(2), 447-450 (2011)

Packet rearranging
This paper presents a methodology for

simulating and measuring TCP Rearranging,
providing an insight into the behaviors of the
congestion and retransmission algorithms, and
demonstrating that Rearranging has a measurable
effect on performance. These measurements
illustrate that there is a maximum Rearranging delay
threshold that should be applied to packets,
regardless of percentage rearranging, below which
Rearranging has negligible effects. Determination
of this threshold, on a specific path, is key to
ensuring that a specific switch or router does not
introduce Rearranging to such an extent that it
causes unnecessary retransmissions and an
associated reduction in throughput. figure 1.1.1
show a graph between Rearranging and packet rate
is drawn and as shown Packet Rearranging does
increase as packet rates increases.

Existing work
TCP uses two strategies for detecting

packet loss. The first one is based on the sender’s
retransmission timeout expiring and is sometimes
referred to as coarse timeout. When the sender
times out, congestion control responds by causing
the sender to enter slow-start, drastically decreasing
its congestion window to one segment. The other
loss detection mechanism originates at the receiver
and uses TCP’s sequence number. Essentially, the
receiver observes the sequence numbers of packets
it receives; a “hole” in the sequence is considered
indicative of a packet loss. Specifically, the receiver
generates a “duplicate acknowledgment” for every
“out-of-order” segment it receives. Note that until
the lost packet is received, all other packets with
higher sequence number are considered “out-of-
order” and will cause duplicate acknowledgment to
be generated. Modern TCP implementations adopt

Fig. 1: Shows graph between
Rearranging and packet rate

the fast retransmit algorithm which infers that a
packet has been lost after the sender receives a
few duplicate acknowledgments. The sender then
retransmits the lost packet without waiting for a
timeout and reduces its congestion window in half.
The basic idea behind fast retransmit is to improve
TCP’s throughput by avoiding the sender to timeout

Limitations
´ TCP detects packet loss through duplicate

Acknowledgement.
´ It performs poorly when packets are

reordered.
´ Its Throughput decreases whenever packet

is reordered.
´ Not easier to deploy.
´ Decreased robustness

Proposed system
The basic idea behind TCP constant

packet rearranging is to detect packet losses
through the use of timers instead of duplicate
acknowledgments. This is prompted by the
observation that, under constant packet
rearranging, duplicate acknowledgments are a poor
indication of packet losses. Because TCP constant
packet rearranging relies solely on timers to detect
packet loss, it is also robust to acknowledgment
losses as the algorithm does not distinguish
between data (on the forward path) or
acknowledgment (on the reverse path) losses.

Fig. 4(a): Packet rearranging

Advantages of proposed system
´ Proposed system works perfectly when

packet is reordered.
´ It uses Timer Control to detect the packet

Loss.
´ Its performance will be same even the packet

is reordered.
´ Proposed system not only depends on the

449LAL et al., Orient. J. Comp. Sci. & Technol., Vol. 4(2), 447-450 (2011)

duplicate acknowledgements and packet
rearranging to detect the packet losses.

´ This system performs consistently better
than existing mechanisms that try to make
TCP more robust to packet rearranging.

´ Easier to deploy since no changes are
required at the sender side.

Problem formulation modules
Transmission without Rearranging

If we transmit a message without packet
rearranging, then If part of a message is lost during
the transmission then we need to retransmit the
entire message or we need to retransmit from that
particular part. Therefore, upon detecting loss, the
TCP sender backs off its transmission rate by
decreasing its congestion window.

Transmission with Packet Rearranging
If we transmit a message as packets then

we need to retransmit only the packet which is lost
and not the entire message. The message is send
from the source to the ingress router and then to
the intermediate routers and then to the outgress
router and the destination. The basic idea behind
TCP constant packet rearranging is to detect packet
losses through the use of timers instead of duplicate
acknowledgments. This is prompted by the
observation that, under constant packet
rearranging, duplicate acknowledgments are a poor
indication of packet losses. Because TCP constant
packet rearranging relies solely on timers to detect
packet loss, it is also robust to acknowledgment
losses as the algorithm does not distinguish
between data (on the forward path) or
acknowledgment (on the reverse path) losses.

Fig. 4(b): Packet rearranging

Segmentation
Segmentation is the process of dividing the

source code into small number of packets and
transmitting the packets through the routers. We
define certain limits for the size of the packets. The
header information includes source machine name,
destination machine name, position of the packet
and the related information.

Timer control
Whenever each and individual packet

starts sending a timer is started. The system current
time is taken as a start time and added with delay
and it acts as a threshold time and if the threshold
time exceeds the maximum elapsed time of the

packet then the packet is retransmitted. If the time
doesn’t exceed then the packet may arrive safe. If
so the next packet is transmitted else the current
packet is transmitted until it arrives safely. Thread
concept is used to implement the timer.

RESULTS

The performance of the transmission
control protocol with packet rearranging is tested
on Windows XP. Comparison chart compares the
throughput of TCP without Packet Rearranging with
TCP With packet Rearranging. The performance is
shown by comparing the Transmission rate of
existing system with proposed system.

450 LAL et al., Orient. J. Comp. Sci. & Technol., Vol. 4(2), 447-450 (2011)

CONCLUSION

In this paper we proposed and evaluated
the performance of TCP constant packet
rearranging, a variant of TCP that is speciûcally
designed to handle constant rearranging of packets
(both data and acknowledgment packets). Our
simulation results show that TCP constant packet
rearranging is able to achieve high throughput when
packets are reordered and yet is fair to standard

Fig. 5.2: Comparison chart of TCP without packet rearranging and with packet rearranging

TCP implementations, exhibiting similar
performance when packets are delivered in order.
Such mechanisms include proposed enhancements
to the original Internet architecture such as multi-
path routing for increased throughput, load
balancing, and security; protocols that provide
differentiated services; and traffic engineering
approaches. As shown from result tat the delay time
for Linux experiment is much more then of Solaris

1. Luo X. and Chang R. K. C., “Novel
Approaches to End-to-end Packet
Rearranging Measurement” Proc. ACM/
USENIX Conf. Internet Measurement, (2005).

2. Bare, A. A., “Measurement and Analysis
of Packet Rearranging,” Masters Thesis,
Dep. Computer Science, Colorado State
University, (2004).

3. Colin M. Arthur, Andrew Lehane, David Harle,
“Keeping Order: Determining the Effect of
TCP Packet Rearranging,” icns, pp.116,
International Conference on Networking and
Services (ICNS ’07) (2007).

4. Sharad Jaiswal, G. Iannaccone, C. Diot, J.
Kuorose, and D. Towsley. Measuring and
classiûcation of out-of-sequence packets in
a Tier-1 IP Backbone, International
Measurement Workshop(IMW) (2003).

5. Piratla, N. M. , Jayasumana A. P. ,and Bare
A. A., “A Comparative Analysis of Packet
Rearranging Metrics,” Proc. IEEE/ACM 1st

REFERENCES

Int. Conf. Communication System Software
and Middleware (COMSWARE 2006), New
Delhi, (2006).

6. Jaiswal, S., Iannaccone, G., Diot, C.,
Kurose, J. and Towsley, D., “Measurement
and Classification of Out-of-sequence
Packets in Tier-1 IP Backbone,” Proc.
IEEE Infocom, 1199- 1209 (2003).

7. R. Teixeira, K. Marzullo, S. Savage, and G.
M. Voelker, “Characterizing and measuring
path diversity of Internet topologies,”
presented at the ACM Sigmetrics, San Diego,
CA, (2003).

8. S. Bohacek, “A stochastic model of TCP and
fair video transmission,” in Proc. IEEE
INFOCOM, 1134–1144 (2003).

9. M. Franklin, T. Wolf. A Network Processor
Performance and Design Model with
Benchmark Parameterization. First
Workshop on Network Processors,
Cambridge, MA (2002).

