
INTRODUCTION

Wireless technology is growing rapidly and
it’s beneficial applications which cause use of PDAs,
laptops, cell phones and etc. To access data
anywhere and anytime, are very common now days.
Mobile database is such a technology which
confronts with some new problems, limitations
and challenges (e.g., bandwidth limitations,
missing connectivity, unreliable and asymmetric
links). In wireless data broadcast systems, a client
has to stay active to continuously receive and check

ORIENTAL JOURNAL OF
COMPUTER SCIENCE & TECHNOLOGY

www.computerscijournal.org

ISSN: 0974-6471
December 2011,

Vol. 4, No. (2):
Pgs. 371- 377

An International Open Free Access, Peer Reviewed Research Journal

Enhanced Cache Gird Partitioning
Technique for K-NN Queries

SHATADAL PATRO¹ and ASHA AMBHAIKAR²*

¹RCET, Bhilai, Sri Ram Colony, Rajnandgaon (India).
¹Department of Computer Science & Engineering, RCET, Bhilai (India).

*Corresponding author: E-mail: asha31.a@rediffmail.com

(Received: November 10, 2011; Accepted: November 16, 2011)

ABSTRACT

Mobile database applications through wireless equipments e.g., PDAs, laptops, cell phones
and etc. are growing rapidly. In such environment, clients, servers and object may change their
locations. A very applicable class of query is continuous k-NN query which continuously returns the k
nearest objects to the current location of the requester. Respect to limitations in mobile environments,
it is strongly recommended to minimize number of connections and volume of data transmission
from the servers. Caching seems to be very profitable in such situations. In this paper, a enhanced
cache grid partitioning technique for continuous k-NN queries in mobile DBSs is proposed. In this,
by square grid partitioning the complete search space is divided into such grid areas so that we can
impose a piecemeal ordering on the query targets. Simulation results show that the proposed
cache grid partitioning schema provides a considerable improvement in response time, number of
connections and volume of transferred data from DB server.

Key words: Cache grid partitioning, k-nearest neighbour, Grid range, Cache hit rate.

the broadcast data until the data the data objects
of interest arrive. Since the mobile user may
repeatedly submit the same type of query, each
time for different values of one or more attributes,
and also from the same position or from different
positions, a cache maintained by the user can cut
down the total processing and network activity time.
Consider a wireless data broadcast system that
periodically broadcasts a collection of data objects
to mobile clients. Each data object consists of a set
of attribute values. Among them, location is
particularly important. Access efficiency and energy

372 PATRO & AMBHAIKAR, Orient. J. Comp. Sci. & Technol., Vol. 4(2), 371- 377 (2011)

conservation are two critical issues for mobile users,
concerning how fast a request could be satisfied
and how energy efficient a technique is. To facilitate
energy conservation, a smart mobile device is
expected to support two operation modes: active
mode and doze mode. The device normally operates
in active mode; and switches to doze mode to save
energy when the system becomes idle.

In the literature, two performance metrics,
namely access latency and tuning time, are used
to measure access efficiency and energy
conservation for mobile clients in a wireless data
broadcast system:

Access Latency
The time elapsed from the moment a

query is issued to the moment it is satisfied.

Tuning Time
The time a mobile client stays active to

receive the requested data items.

In wireless data broadcast systems, a
client has to stay active to continuously receive and
check the broadcast data until the data objects of
interest arrive. This process consumes a lot of
energy.

K-Nearest Neighbor Search
A k-nearest neighbour (kNN) query finds

the nearest k objects to a query point. The basic
idea behind kNN algorithms is to determine a search
space based on the partial knowledge of object
distribution obtained from index table. The search
space will continuously shrink as more knowledge
of the data distribution is obtained. The challenge
is to quickly determine a precise search space that
contains all the k objects. The initial search space
is the whole spatial region covering all the data
objects in the system. As a client tunes into the
broadcast channel to receive the first index table, a
circle centred at the query point (which specifies a
search space) is drawn to include at least k data
objects. If the query point is located far away from
the current broadcast frame, the circle could be very
large because the index table has very limited
information about distribution of data objects far
away (due to exponential increase of data objects
covered by index table entries). As the client

continues to monitor the broadcast channel and to
obtain more information about object distribution
from index tables of subsequently broadcast frames,
the circle can be shrunk to avoid retrieval of frames
containing unwanted objects. On the other hand, if
a query point is close to the current broadcast frame,
the search space will converge very rapidly and the
search process typically will terminate quickly,
because there are more index entries in DSI
covering data objects to be broadcast soon. The
search space is finalized when no more objects
could further reduce the radius. The search is
completed when all the objects within the search
space are retrieved.

Fig. 1: Representation of Basic k-NN search

Mobile Cache with square box grid partitioning
Since the mobile user may repeatedly

submit the same type of query, each time for
different values of one or more attributes, and also
from the same position or from different positions,
a cache maintained by the user can cut down the
total processing and network activity time.

Our approach towards designing such a
cache is based on square box grids with axis-aligned
boundaries. The following figure depicts the search
space divided into three such grids with the mobile
user at the origin.

Fig. 2: Square box grid partitions

373PATRO & AMBHAIKAR, Orient. J. Comp. Sci. & Technol., Vol. 4(2), 371- 377 (2011)

In Figure 2, the origin denotes the query
point.

Grids are numbered starting from 1. Each
grid is associated with a grid range, which is the
maximum absolute x or y coordinate value for that
grid relative to the query point. A point P with
coordinates (xp,yp) is assigned gridi, when
gridrangei-1 < max(abs(xp), abs(yp)) <= gridrangei,
where i > 1. For i = 1, 0 <= max (abs (xp), abs (yp))
<= gridrangei.

This means all points on the outer
boundary of a grid belong to the grid, but the inner
boundary does not belong to the grid.

A faster search can be expected if the
values of the grid range increase geometrically. In
practice, the ranges for the grids can be assigned
incrementally as follows:-

A suitable initial range s is chosen for the
1st grid. Then the range of the subsequent grid is
assigned a value which is the next higher integer
of s.√2 and so on.

An example of 8 grids with minimum grid-
range 10 and maximum 100 is shown in Table 1.

from grid 1 and go on traversing the grids in
ascending order, till we find a non-empty grid. We
calculate the distances of the points in the grid from
the origin and try to find up to k nearest points. All
points whose distances are less than the grid range
must be the nearest points. If we find k such points
our search ends here. If we have found less than k
points (say k1 points) and if among the nearest
points we have found in the current grid, there are
points whose distances are larger than the grid
range then we need to compare their distances only
with points in the next non-empty grid. Say there
are k2 such points. So we scan up to the next non-
empty grid and find the points with the shortest
distances in it. Since we have already found k1
nearest points, then we need to find only up to k –
k1 nearest points and compare them with the k2
points in the previous grid. Say we have found k3
(k3 <= k –k1) nearest points. So we sort the (k3 +
k2) points on the distance and of these the k2
nearest points are the nearest from the origin. So
we have thus found (k1 + k2) nearest points. Of the
rest k3 points, if there are k4 points whose distances
are less than the current grid’s range, then these
are also nearest points. Thus we have found (k1 +
k2 + k4) nearest points and we need to compare
the remaining (k3 –k4) points with the next non-
empty grid. We proceed in this way until we have
found all k nearest points or all the grids are
processed.

Architecture
Base Tower (BT) of each cell has data

about landmarks located in its own cell as well as in
its neighbouring cells. Each landmark has
associated attributes like Name, Latitude, Longitude,
and other attr ibutes specifying its other
characteristics, e.g. “Star” information for Hotels.

Table 1: A Sample Grid Partition

Grid Range Grid Number
(max & min values

in positive x or y direction)

 0-10 1
11-15 2
16-22 3
23-32 4
32-46 5
47-66 6
67-94 7
95-100 8

This means by partitioning the complete
search space into such grid areas, we can impose
a piecemeal ordering on the query targets and
thereby reduce the total search space.

For finding the k nearest points, we start Fig. 3:

374 PATRO & AMBHAIKAR, Orient. J. Comp. Sci. & Technol., Vol. 4(2), 371- 377 (2011)

The BT broadcasts these data on a broadcast
channel

For example, if a mobile client is in the red
coloured cell (as shown in the Figure 3), then
the BT of this cell will broadcast data of landmarks
located in this cell as well as in neighbouring six
cells (shown in green colour in the above figure).
When a mobile client enters the cell under a BT, it
tunes into the broadcast channel, downloads the
data and stores them into cache memory.

As long as mobile client is in the area
covered by a BT, all queries will be processed with
the data stored in the cache. When it crosses over
to an area under the jurisdiction of another BT, the
cache will be reloaded with new data downloaded
from the broadcast channel of that BT.

can be multiplied by a suitable scaling factor
(multiple of 10) and only the integer part of the
product need to be considered. The cache is
organized in the form of a number of separate
buffers corresponding to each grid. The buffers can
be implemented as lists or as dynamic tables.
The insertion operation is similar to a disjoint set
find operation. An integer array rangebuf
[MAX_EXTENT] is set up before the processing
starts and each element in the array is initialized
with the corresponding grid partition number. For
example, for the grid partition as shown in Table 1,
MAX_EXTENT=100, rangebuf[0] to rangebuf10

contains 1, rangebuf11 to rangebuf15 contains 2 and
so on. It is to be noted that the actual search space
covered in this case is 200X200, i.e., the total
number of possible search points is 40000.

During cache insertion, for each target
point its grid number is looked up from the array
with the subscript max (abs(x), abs(y)), where x
and y are the coordinates of the target point. Once
the grid number corresponding to a target point is
known, the point can be inserted into the buffer
corresponding to that grid. Thus, a cache insertion
will involve a lookup into an n-element array where
the maximum possible number of targets is (2n) 2.

The cache will be maintained in the RAM
of the mobile device with a limited capacity (typically
8-12 MB). Also the user should be allowed to run
other applications during the same time. So it is
possible that while inserting into the cache, an out
of memory condition may occur. In this case, the
buffer belonging to the farthest grid with all the points
already inserted into the buffer will be deleted and
the corresponding memory will be freed.
Additionally, no points belonging to that grid or any
grid farther than that will be read into the cache
from that point onwards. This will ensure that a fast
deletion and memory clean up happen every time
the cache is filled up.

General Cache Algorithm
Initially the cache is empty, so for the initial

query the network is searched and simultaneously
the cache is loaded from network data. The cache
is organized in the form of grid partitions and the
user maintains the count of points in each grid
partition. For subsequent queries, first it is tested if

Fig. 4:

Cache Maintenance
The three important issues for cache

maintenance considered are:
´ Fast cache insertion and deletion
´ A fast cache search algorithm
´ A reasonable cache hit rate

Fast cache insertion and deletion
We assume that the maximum extent in

either x and y direction of the complete search space
is known a-priori and we denote it by MAX_EXTENT
(which we assume to be the same for both x and y
direction). Also we assume that the coordinate
system has been set up in such a way that every
position can be specified by integer coordinates. In
case this is not true, then the coordinate values

375PATRO & AMBHAIKAR, Orient. J. Comp. Sci. & Technol., Vol. 4(2), 371- 377 (2011)

the cache needs to be reloaded and/or repartitioned
based on the updated Query Point location and the
partition point counts. If neither is required the
existing cache is searched to answer queries.

The main cache algorithm is given below:-
If EmptyCache() Then // Initial Query

SearchNetworkAndLoadCacheFromNetwork()
UpdateQPLocationAndPartitionCounts()

ElseIf QueryPointMoved(QPLocation) Then //
Repeat query at a new position

TestIfCacheRepartitionIsRequired()
If CacheRepartitionNotRequired Then
SearchInCache(query)
Else TestIfCacheReloadIsRequired()
If CacheReloadingNotRequired Then

 RepartitionCache()
 SearchInCache(query)
 Else // Moved out of range
 SearchNetworkAndLoadCacheFromNetwork()
 UpdateQPLocationAndPartitionCounts ()
Else // Repeat query at same position
 SearchInCache(query)

Analysis of the algorithm
Assuming a uniform distribution of objects

over the search space, the number of objects in
each partition is proportional to its area. Therefore
the number of objects in the i-th partition is found
from the relation:

 ni = n1 + n2 + … + ni-1, for i > 1
It follows, ni = 2* ni-1, for i > 2

In order to find k objects, in the best case
exactly k objects are found within some i-th partition
starting from the 1st partition. In this case only the
objects in the (i+1)-th partition are to be considered,
whose number can also be assumed as k. Thus a
total 2k objects are to be compared.

In the worst case, k-δ (δ < k/2) objects are
found within the i-th partition, thus the next two
partitions need to be considered. So, the maximum
number of objects to be compared is k + k + 2k =
4k.

As per the algorithm, a sorted array of
length k is maintained. Therefore the total number
of comparisons to find the k nearest objects is 2k2

in the best case and 4k2 in the worst case. The
number of operations to partition the n-objects is
O(n). Therefore, the time complexity of the k-n-n
search algorithm is O(n+k2).

In a linked list implementation, n object
nodes plus r header nodes (where r is the number
of partitions) have to be maintained. For a dynamic
array implementation, arrays of twice the number
of objects need to be kept for each partition. Thus
the space complexity is O(n).

In case k2 is less than n, or to be more
exact, if k<√n/2, then the O(n) term dominates. Since
partitioning needs to be done only once, the total
time for a number of queries from a fixed location is
thus only O(n) and does not depend significantly
on the number of queries issued.

Ensuring a reasonable cache hit rate
The cache-hit rate primarily depends on

the available space in the cache. If all index entries
can be successfully stored in the cache, then all
nearest neighbors must be found in the cache. Even
when it does not happen, there is a fair possibility
that the nearest neighbors will be found in the cache.
It follows from the fact that, since the grid ranges
and so grid areas increase geometrically after the
first grid, it can be expected that most of the points
in the search space will be in the last grids and so,
they do not enter consideration from the very outset.

 There can be three possible outcomes
from the cache search:
´ The nearest neighbors are found in the

cache
´ No target satisfying the given condition is

found in the cache
´ Nearest neighbors are found in the last grid,

but their distances are larger than the last
grid range, i.e., these are at one of the corners
(outside the inscribed circle) of the last grid
and there may be points nearer than those.

In case of the last two outcomes, the
nearest neighbors have to be sought in the network
data.

Performance Comparison
We have done simulation studies with both

376 PATRO & AMBHAIKAR, Orient. J. Comp. Sci. & Technol., Vol. 4(2), 371- 377 (2011)

uniform random datasets and a real dataset
(sequoia1.zip at http://isl.cs.unipi.gr/db/projects/
rtreeportal/, which contains California locations).
Here we present the results obtained with the real
dataset consisting of 62556 location points. We have

executed a sample application where the user wants
to know the 3 nearest locations in 4 directions (East,
West, North and South) in consecutive queries. In
each case we have executed 100 to 500 iterations.

Time taken for one (E) direction Time taken for 2 (EW) direction

Time taken for 3 (EWN) directions Time taken for 4 (EWNS) directions

Following are the graphs showing the time
taken over 5 iterations (each iteration consisting of
100 nested iterations). The ‘Simple’ refers to the
method without using a cache.

The results show that for the first query
(only points in the EAST), the cache strategy takes
slightly more time than without using a cache. For
2 or more queries (where more than one direction
data were queried), our strategy is 25% to 40%
faster in most cases.

Conclusion & Future enhancement
In this project work, I have presented a

cache strategy for mobile users, which can improve
the performance of k-nearest-neighbor queries in
the Wireless networks. We have also presented the

results from a performance evaluation done with
real data for a specific query, which is meant to find
the nearest neighbor in a user-specified direction.
This shows that by using the cache, the processing
time and network activity time of the mobile user
can be improved.

The application developed by me,
“Enhanced Cache Grid Partitioning Technique for
LBS” finds landmarks of interests with the criteria
specified by the user, displays on the screen their
names, latitudes and longitudes. My work can be
further extended by feeding the latitude and
longitude values of landmarks to a GPS Navigation
System that will guide the user to reach the
destination landmark.

377PATRO & AMBHAIKAR, Orient. J. Comp. Sci. & Technol., Vol. 4(2), 371- 377 (2011)

1. Ali A. Safaei, Mehdi Mallah, Fatemeh Abdi,
Shahab Behjati,”Semantic Cache Schema for
Continuous k-NN Queries in Mobile DBSs”,
Information Technology International
Research Journal 1(1): 21-32 (2011).

2. Mr. C. Gopala Krishnan, Dr. V. Kavitha, Ms. J.
Jesu Vedha Nayahi,”Reducing Latency by
Providing Location Based Services using
Hybrid Cache in Ad Hoc Networks”, Int. J. of
Advanced Networking and Applications
2(01): 428-436 (2010).

3. Wei Zhang, Jianzhong Li, and Haiwei
Pan,”Processing Continuous k -Nearest
Neighbor Queries in Location-Dependent
Application”, IJCSNS International Journal of
Computer Science and Network Security,
6(3A): (2006).

4. J. Xu, Q. Hu, W.-C. Lee and D.L. Lee
“Performance Evaluation of an Optimal
Cache Replacement Policy for Wireless Data
Dissemination under Cache Consistency”,
IEEE Transaction on Knowledge and Data

Engineering (TKDE), 16(1): 125-139 (2004).
5. A. Y. Seydim, M. H. Dunham , V. Kumar,

“Location Dependent Query Processing”
Proceedings of the 2nd ACM International
Workshop on Data engineering for Wireless
and Mobile Access, Santa Barbara,
California, United States (2001).

6. S. Berchtold, D. A. Keim, H. P. Kriegel, and T.
Seidl. Indexing the solution space: A new
technique for nearest neighbor search in
high-dimensional space. IEEE Transactions
on Knowledge and Data Engineering
(TKDE), 12(1): 45-57 (2000).

7. K. L. Cheung and W.-C. Fu. Enhanced
nearest neighbour search on the r-tree.
SIGMOD Record, 27(3): 16-21 (1998).

8. N. Roussopoulos, S. Kelley, and F. Vincent.
Nearest neighbor queries. In Proceedings
of the ACM SIGMOD International
Conference on Management of Data
(SIGMOD’95), 71-79 (1995).

REFERENCES

