
INTRODUCTION

Grid computing which aims at enabling
wide-area resource sharing and collaboration is
emerging as a promising distributed computing
parading. According to how they schedule.
Computational jobs to resources, computational
grids can be classified into two types: controlled
and market-like grids. Both types involve sharing
and collaboration among resource providers and
resource consumers, and the scheduling schemes
can be either centralized or decentralized. The key
difference between the two lies in who makes

An Incentive-based Peer-to-Peer Grid Scheduling

K.SRINIVASA RAO* and M.V.S.N. MAHESWAR

Assistant Professor, Department of Computer Science, Bhimavaram Institute of
Engineering & Technology, Bhimavaram, Affiliate To JNTUK, Kakinada - 534 243 (India).

Assistant Professor of CSE Department PVPSIT, Vijayawada, Affiliate To JNTU,
Krishna (District) A.P. - 520 00 (India).

*Corresponding author: E-mail: ksr9_kgrl@yahoo.co.in

(Received: July 26, 2011; Accepted: August 29, 2011)

ABSTRACT

In a grid commuting environment, resources are autonomous, wide-area distributed, and
they are usually not free. These unique characteristics make scheduling in a self-sustainable and
market-lime grid highly challenging. The goal of our work is to build such a global computational grid
that every participant has enough incentive to stay and play in it. There are two parties in the grid:
resources consumers and resource providers. Thus the performance objective of scheduling is
two-fold: for consumers, high successful execution rate of jobs, and for providers, fair allocation
of benefits. We propose an incentive-based grid scheduling, which is composed of a P2P
decentralized scheduling framework and incentive-based scheduling algorithms. We present an
incentive-based scheduling scheme, which utilizes a peer-to-peer decentralized scheduling
framework, a set of local heuristic algorithms, and three market instruments of job announcement,
price, and competition degree. The results show that our approach outperforms other scheduling
schemes in optimizing incentives for both consumers and providers, leading to highly successful
job execution and fair profit allocation.

Key words: Grid Computing, Scheduling, Peer to Peer, Resource Consumers, Resource Providers.

scheduling decisions. In a controlled grid, the grid
system decides when to execute which job on which
resource. In market-like grid, such decisions are
made by each resource provider/consumer, but all
the individual participants utilize some market
instruments such as price to achieve the grid system
wide objectives.

This paper focuses on the scheduling
problem in market-like computational grids. In
particular, we address the issues of optimizing
incentives for both resource consumers and
resource providers so that every participant has

ORIENTAL JOURNAL OF
COMPUTER SCIENCE & TECHNOLOGY

www.computerscijournal.org

ISSN: 0974-6471
December 2011,

Vol. 4, No. (2):
Pgs. 305-315

An International Open Free Access, Peer Reviewed Research Journal

306 RAO & MAHESWAR, Orient. J. Comp. Sci. & Technol., Vol. 4(2), 305-315 (2011)

sufficient incentive to stay and play, leading to a
sustainable market. The main challenge, phrased
as a scheduling problem, is to schedule jobs of
consumers to resources of providers to optimize
incentives for both parties.

The advantage of P2P is that a lot of
otherwise unused resources can be harvested for
the development of science, engineering, and
business. Different types of P2P systems have been
developed to support file sharing, distributed
computing, collaboration, searching instant
messaging.

One of the most important tasks of any
grid coordinator is an effective allocation of jobs to
available resources.

Although different optimization heuristics
might be applicable here, not all of them satisfy
particular Grid Scheduling requirements (such as
necessity to operate in fully-automated mode). Our
current project is aimed to investigate the
performance of different Grid Scheduling algorithms
and find the most suitable one for the practical use.

With the rapid development of high-speed
wide-area networks and powerful yet low-cost
computational resources, Grid computing has
emerged as an attractive computing paradigm. In
this paper the goal is realized by building a
computational market supporting fair and healthy
competition among consumers and providers. Each
participant in the market competes actively and
behaves independently for its own benefit. A market

is said to be healthy if every player in the market
gets sufficient incentive for joining the market.

Decentralized computing systems are
becoming increasingly popular as they enable
organizations to use existing computing resources
that otherwise lie idle. Whether this paradigm will
be successful largely depends on the flexibility and
easiness with which it can be implemented and
managed.

Statement of the problem
We define a market-like computational grid

as a four-tuple G=(R, S, J, M), as depicted in Fig. 1.
The grid G consists of a set of m resource providers
R = {R

0,……,Rm-1} and a set of k resources consumers
S = {S0……..,Sk-1}. Over a time period T, a set of n
jobs J = {J0……..,Jn-1} are submitted to the grid by the
consumers, scheduled by the scheduling scheme
M, and executed by resources of the providers. The
scheduling scheme M should employ market
instruments to allow each provider and each
consumer to make the scheduling decision
autonomously. That is, each provider Ri can decide
whether it would offer its resource, and each
consumer Sj can decide whether it would use a
certain resource to execute its jobs.

Consumers and Jobs
In this paper, we only consider

computation-intensive jobs, where all
communication overheads can be ignored. All jobs
are independent of one another. The k consumers
altogether have n jobs to execute in time period T.
The consumers first submit job announcements to
the computational grid. A job announcement
includes the information of job length and job
deadline.Job length is an empirical value assessed
as the execution time of the job on a designated
standard platform. Job deadline is a wall clock time
by which a consumer desires a job to be finished,
expressed as a number between 0 and T.

Providers and Resources
Each resource provider is modeled with

three parameters: capability, job queue, and unit
price. Capability is the computational speed of the
underlying resource, expressed as a multiple of the
speed of the standard platform. The job queue of a
resource provider keeps an ordered set of jobs

Fig. 1: Scheduling in the
market-like computational grid

307RAO & MAHESWAR, Orient. J. Comp. Sci. & Technol., Vol. 4(2), 305-315 (2011)

scheduled but not yet executed. Each job, once it
is executed on a resource, will run in a dedicated
mode on that resource, without time-sharing or
preempting. A provider charges for a job according
to its unit price and job length.

Unit price refers to the price that the
resource offers for executing a job of unit length.

Many incentive metrics can be defined for
providers, but a fundamental one is the fairness of
the market, where each provider has equal
opportunity to offer its resource, and it can obtain a
fair profit according to its capability. Fare allocation
of profits, by which we mean that a provider is
allocated the same share of profit as that of the
capability that it invests to the market, is attractive
to all potential providers, including not only those
with higher capabilities but also those with lower
capabilities.

Related work
Much attention has been devoted to the

area of scheduling in distributed computing2-18.
However, to the best of our knowledge, there is still
no work investigating effective scheduling to
optimize incentives for both consumers and
providers, utilizing market information.
Many previous research projects focused on
optimizing traditional performance metrics, like
system utilization, system load balance, and
application response time in controlled grids. They
did not consider market-like grids, where providing
sufficient incentives for participants is a key issue.
Many projects7-18.Have investigated the
effectiveness of introducing economic models and
theories into distributed resource scheduling.
Researches in [12] and [17] study incentives for
participants to behave honestly. Our work learned
from these researches, these researches only
consider consumer objectives or provider objectives,
whereas we focus on optimizing incentives for both
consumers and providers.

Enterprise7]is a task scheduler for
distributed market-like computing environments.

The work shows the effectiveness of
bidding for a decentralized scheduling framework.
Spawn [8] is a market-based computational system

that utilizes idle computational resources in a
distributed network of heterogeneous computer
workstations. The auctions employed by Spawn are
sealed-bid second-price auctions. Buyya et al.,9

identify the distributed resource management
challenges and requirements of economy-based
grid systems and discuss various representative
economy-based systems. They also present
commodity and auction models for resource
allocation. The evaluation results of computational
and data grid environments demonstrate the
effectiveness of economic models in meeting users’
QoS requirements. We choose a consumer initiated
bid model in our work.

Compute P2P17 is an architecture for
enabling Internet computing using peer-to-peer
(P2P) networks for haring of computing resources.
The work focuses on modeling pricing with the game
theory and microeconomics to deal with selfish
behavior and proves that its model guarantee the
incentive for all the providers to share resources
and not to cheat. SHARP18 is a framework for secure
distributed resource management in an Internet-
scale computing infrastructure. Its main focus is not
scheduling but the security mechanisms that protect
against various threats and vulnerabilities. Their
definition of the oversubscription degree (OD) bears
some similarity to the CD in our work. However, OD
takes effect when providers issue tickets, and CD
takes effect after providers bid for jobs. In addition,
we consider penalty as a feedback to help adjust
CD and focus on achieving fairness among
providers.

Partial results of our incentive-based
scheduling work are reported in [19] and [20]. In
[19], consumers assign budgets to jobs and choose
providers according to the claimed completion time.
No price or CD mechanisms are investigated. In20,
the impact of CD is studied. It does not formulate
the dual-objective scheduling problem, develop a
complete scheduling scheme, evaluate
performance in detail, or provide quantitative
comparison with related work, as what the current
paper does.

The incentive-based scheduling scheme
We define an incentive-based scheduling

scheme with heuristics, employing a P2P
decentralized scheduling framework. The scheme

308 RAO & MAHESWAR, Orient. J. Comp. Sci. & Technol., Vol. 4(2), 305-315 (2011)

is characterized as follows: 1) each consumer or
provider autonomously makes scheduling decisions,
2) all scheduling algorithms are local to a resource
provider, and 3) three market instruments, job
announcement, price, and CD, are used.

Peer-to-Peer Scheduling Framework
Our scheduling framework takes

advantage of the P2P technology, utilizing its
characteristics of decentralization and scalability.
Aside from that, as every par ticipant in the
computational grid is autonomous acts individually,
a decentralized scheduling infrastructure is more
favorable. Furthermore, owing to the dynamics of
grid environments, players may enter or leave at
will at any time. A P2P network can handle such
dynamics.

A consumer submits a job announcement
to the computational grid via one portal. Then, the
job announcement spreads throughout the P2P
network, similar to query broadcast in an
unstructured P2P system. The providers that receive
a job announcement may bid for the job. We want
to realize the complete competition among all the
providers based on two considerations. First, the
job execution time is sufficiently long such that the
overhead of executing them on remote computers
becomes relatively negligible. Thus, all the providers
should have an equal chance to compete for any
job, no matter where their geographical locations
are. Second, the number of providers will not be
too large, typically not more than several hundreds,

for a provider represents an administrative domain,
within which local scheduling policies are employed.

The P2P scheduling infrastructure enables
the effective interactions between consumers and
providers, and jobs are scheduled as a result. Fig.
2 depicts the complete sequence of steps that a
single job goes through in the scheduling scheme
M. All jobs from consumers follow the same steps:

Step 1
A consumer submits a job announcement

to the computational gr id, and the job
announcement is broadcast to all the providers.

Step 2
Each provider, upon receiving a job

announcement, estimates whether it is able to meet
the deadline of the job. If yes, the provider sends a
bid that contains the price for the job directly back
to the consumer; otherwise, the provider ignores
the job announcement.

Step 3
After waiting for a cer tain time, the

consumer processes all the bids received, chooses
the provider who charges the least, and sends the
job is finished, the provider sends the result to the
consumer.

Step 4
The provider who receives the job inserts

it into its job queue. When the job is finished, the
provider sends the result to the consumer.

Incentive-based scheduling algorithms
We design four algorithms for

providers.The job competing algorithm describes
how a provider bids when receiving a job
announcement in step 2. The heuristic local
scheduling algorithm is responsible for arranging
the execution order of jobs in the job queue of a
provider. It starts when a provider receives a job in
step 4. The price-adjusting algorithm and the CD-
adjusting algorithm help a provider in dynamically
adjusting its unit price and CD properly over the
period of its participation in the computational grid.

Job Competing Algorithm
If bidding, one job likely misses its deadline

Fig. 2: The steps that a single Job goes through
in the incentive-based scheduling scheme

309RAO & MAHESWAR, Orient. J. Comp. Sci. & Technol., Vol. 4(2), 305-315 (2011)

when both jobs are received. Things get more
complex when more jobs are involved. There are
two extreme attitudes for providers to compete for

5 else // TL is covered by the execution of Ji in
the queue

6 if insert s at Pi-1, none of Ji ~ Jq will miss its
deadline then

7 can-meet ← true;
8 reordered ← true;
9 insert-place ← Pi-1;
10 else
11 can-meet ← false;
12 end if
13 end if

Step 2
The provider offers a price for the job. The

pseudo code is given as follows.
1 price ← p*Ls;
2 if reordered then
3 price ← λ * price;
4 end if

Here, p is the unit price of the provider, Ls

is the job length of job s, and l is a decimal slightly
larger than 1. When the variable reordered is set
to true, the price is raised. To meet job deadlines,
some jobs may be inserted into the job queue ahead
of foregoing jobs, which indicates that the deadlines
of these jobs are somewhat tight and the jobs need
to be given higher priority. Step 3. The provider
sends the price as a bid and inserts the job at the
place that the variable inset place indicates at the
probability of 1-CD. If the provider chooses to insert
and the job does not come after a certain time, it
deletes the job from its job queue. The duration of
keeping an unconfirmed job should be as short as
possible but long enough to guarantee not to delete
offered jobs.

Heuristic Local Scheduling Algorithm
We employ a punishment mechanism that

providers are obliged to pay penalty for missing job
deadlines. A simple linear penalty model is used.
The amount of penalty is proportional to the
exceeding time, that is, how much time the
completion time T

C exceeds the deadline TD.

Once the penalty model is introduced,
providers must take some measures to minimize
the loss. What a provider can do is to arrange the
execution order of jobs in CD is exits job queue.
The approach is based on the heuristic rule that

Fig. 3: Job queue of a provider

jobs. One is aggressive. It means that a provider
never considers the unconfirmed jobs when
estimating whether it is able to meet job deadline.
This is a risky one, but chances often accompany
risks. The other is conservative. It means that a
provider always keeps the unconfirmed jobs in the
job queue for consideration for a certain time. This
attitude will never lead to deadline missing but may
lose potential chances and, thus, profits. Different
competition attitudes will result in different
allocations of profits. To study the impact of
competition attitude, we define a parameter named
CD, a real number from 0 to 1. A provider will insert
unconfirmed jobs into its job queue at the probability
of 1-CD.

For example, for aggressive providers, CD
is 1. For conservative ones, CD is 0. For providers
who just toss up, CD is 0.5.

Step 1
The provider estimates whether it is able

to meet the job deadline.

As Fig. 3 shows, there are q jobs in the job
queue. If we call the potential new job as
s,P0,P1,……., and Pq represent the q+1 possible
places for s to be inserted into. TA, the available
time, is the time instance when all the jobs in the
job queue are completed. TL is calculated by
subtracting the execution time of s from the deadline
of s. It is the latest time to begin the execution of s
if the provider does not want to let s miss its deadline.
The estimation is described with the following
algorithm:
1 if TL>TA then
2 can-meet ← true;
3 reordered ← false;
4 insert-place ← Pq;

310 RAO & MAHESWAR, Orient. J. Comp. Sci. & Technol., Vol. 4(2), 305-315 (2011)

when a job is inserted, the relative order of the
jobs in the origin queue is unchanged. Every time
a provider is offered a job that is not kept in the job
queue, it starts the heuristic local scheduling
algorithm. The algorithm is needless for providers
whose CD equal to 0, because they always keep
unconfirmed jobs. The heuristic local scheduling
algorithm is:
1 insert place ← Pq;
2 penalty ← calculate the penalty of inserting

the job ← at Pq;
3 for i ← q-1 to 0 do
4 penalty i ← calculate the penalty of inserting

the Job at Pi;
5 if penalty i < penalty then
6 penalty ← penalty i;
7 insert-place ← Pi;
8 end if
9 end for
10 insert the job at inset_place

Price-Adjusting Algorithm
Because a consumer chooses the

cheapest provider, it is the price mechanism that
directs almost the whole scheduling. After all,
computer systems are very different from human
economies in many aspects [8] first, human decision
making is difficult to model, and human beings are
diverse in their methods for decision making.
Second, human beings make decisions based on
the information from the whole society via various
media. However, it is not the case for computer
systems. Therefore, enabling computer systems
to exhibit meaningful market-like behavior is still an
open problem. To emphasize the main idea, we do
not take great pain trying to model the price
mechanism of the real market. Instead, we design
a simple and intuitive price-adjusting algorithm.

As our performance objective for providers
is the fair allocation of profits, it involves all the
providers. It is almost impossible to be realized if
every provider just behaves based on the local
information. Inevitably, all the providers need to know
some global information. In our algorithm, we
assume that every provider is informed with the
aggregated capability of all the providers in the
computational grid. The information can be acquired
when a provider enters the grid via a portal and is
updated in the dame way that a job announcement

is forwarded.In a certain period of time, every
commodity has a predominant price in the market.
For a commodity like CPU cycles, such a price is
easier to determine, because commodities of this
kind do not have great difference in quality. We call
the price as market price, and it acts as a directive.
When entering the grid, a provider gets the market
price from a portal and sets it as the initial unit price.
Then, every time a provider is offered a job or
deletes an unconfirmed job, it starts the price-
adjusting algorithm.
1 r1 ← L

O/LT;
2 r2 ← C/Σ0≤j<mCj;
3 if offered a job then
4 if r1 > r2 and p<=PM then
5 p ← α*p;
6 endif
7 else // delete an unconfirmed job
8 if r1 < r2 and p >=PM then
9 p← β*p;
10 endif
11 endif

LO, which is the offered job length, is the
aggregated length of jobs offered to the provider.
LT, which is the total job length, is the aggregated
length of jobs whose announcements are received
by the provider. Σo≤j<m Cj is the aggregated capability
of all the providers. The offered job length and the
total job length rewind when the total capability is
updated. In addition, C and p are the capability
and unit price of the provider, respectively, PM is
the market price, α is a decimal above 1, and β is a
positive decimal under 1. Our price-adjusting
mechanism is simple and intuitive: just to make
prices different, differentiate the chances of
providers to be chosen and eventually realize the
fair allocation of profits.

Competition-Degree-Adjusting Algorithm
The more conservative ones are relatively

less competitive than the more aggressive ones.
They always keep unconfirmed jobs in their job
queues and tend to lose potential jobs because of
being unable to bid. Most likely, these jobs are
offered to the more aggressive ones. As a result,
fairness among all the providers is hard to achieve.
Moreover, the jobs that could have been done by
the conservative ones may bring the aggressive
ones not only profit but also penalty, of course, which

311RAO & MAHESWAR, Orient. J. Comp. Sci. & Technol., Vol. 4(2), 305-315 (2011)

results from deadline missing. A wise provider,
whether a conservative or an aggressive one,
should never hold its attitude toward competition if
things like that happen. It will adjust its CD according
to the situation that it perceives. Thus, we design
the CD-adjusting algorithm.
//Every time the penalty increases
1. if Rp >=THp and CD >=ε then
2. CD←CD-e;
3. endif
//Every time a certain interval such as 1 day
1. if Rp<THp and Rj>=THj and CD <=1-ε then
2. CD←CD+ε ;
3. endif

Here Rp is the ratio of penalty to profit,
and Rj is the ratio of jobs that the provider does not
bid for. THp and THj are thresholds for them,
respectively. If one rate gets above its threshold,
CD is adjusted accordingly at the step of ε . As can
be seen, the check of Rp is not only timelier but
also prior.The reason is that the rate of penalty to
profit is a more obvious index to providers. Thus,
Rp is checked every time the penalty increase in
penalty in time, whereas interval such as 1 day.

Performance evaluation
We develop a discrete event-driven

simulator with the Java programming language to
simulate the computational grid. Consumers and
providers are modeled as two kinds of entities in
the simulation system. The communications
between them are performed by event delivery. As
for the advance of simulation time, there are mainly
two drives: one is the network delay of
communications, and the other is job execution.
We ignore delay in the simulator but focus on
implementing the algorithms and evaluating them.
We do four experiments: the first investigates the
impact of CD on performance, the second analyzes
the incentive-based scheduling scheme by
disabling the CD-adjusting algorithm or the price-
adjusting algorithm, and the last two compare our
scheme with four other schemes under synthetic
workloads and real workloads, respectively.
Altogether, our simulator scheduled over 30 million
jobs to generate the results of the four experiments
including about three million for the experiment
under real workloads.

Simulation results
System Load

As viewed from mathematics, system load
can be defined as a ratio of aggregated load to
aggregated capability in a period of time. The
following equation gives a formal explanation.
 a _a _r * a _ j _l * n _ c
System_Load = ________________________
 a _ c * n _ p
a _ a _ r : average arrival rate of jobs
a _ j _l : average length of jobs
n _ c : number of consumers
a _ c : average capability of providers
n _ p : number of providers

Consumer and Provider
Consumers independently generate jobs

from time to time. For each consumer, job
generation is modeled as a poisson process. Thus
the interval between two job generations is
exponentially distributed. The mean is the reciprocal
of average arrival rate of jobs and can be calculated
with the aforementioned system load definition
equation. The job length is uniformly distributed, and
the duration from the time instance of job generation
to the deadline is uniformly distributed as well.

The capability of providers is normally
distributed due to the observation that during a
cer tain time, computers of some capability
predominate in the computer market. To study the
impact of CD on scheduling performance, we devise
the simulator so that one simulation can work out
results of different CD configurations, while other
configurations are the same including length,
deadlines order and arrival intervals of jobs, and
capabilities of providers.

Simulation Results
In our simulation experiments, there are

in total 20 consumers and 80 providers. Lengths of
jobs average 100, and capabilities of providers
average 10. λ is assigned as 1.05, α as1.1, and β
is0.9. Met price is 1. System load of simulations
varies from 0.1 to 0.7 with step of 0.1. Every
simulation runs as long as 110 days in simulation
time, working out results of three different CD
configuration: 0,0.5, and 1.

312 RAO & MAHESWAR, Orient. J. Comp. Sci. & Technol., Vol. 4(2), 305-315 (2011)

First, we study the incentive of consumers.
Our performance objective for consumers is high
successful execution rate of jobs. There are two
related metrics: failure rate and deadline missing
rate. A job fails because all the providers think that
they cannot meet the deadline and decide not to
bid. The definition of the two matrices is listed below.
 n _ j _ fail
Failure _ rate = ——————————
 n _ j _ submitted

 n _ j _ miss
Deadline _ missing _ rate = —————————
 n _ j _ finished

n _ j _ fail : number of jobs that fail
n _ j _submitted : number of jobs submitted
n _ j _miss : number of jobs that miss deadline
n _ j _ finished : number of jobs finished

The failure rate ζ is defined as the ratio of
the number of jobs that fail to n, which is the number
of jobs submitted to the computations grid. The
deadline missing rate η is defined as the ratio of
the number of jobs that miss their deadlines to the
number of jobs that the grid accepts and executes.

Table 1 and Table 2 show the simulation
results of the two metrics. Table 1, we can see that
if providers are extremely aggressive, that is CD is
equal to 1, all the jobs submitted by consumers can
be executed. If providers are not so aggressive, job
failure happens, for providers reserve for
unconfirmed jobs and tends to fail to meet the
deadlines of those coming later. When the
conservation comes to an extreme that is CD is
equal to 0, the failure matrices increases greatly
when the system load gets heavier. When the

Table: 1 Failure rates of jobs

System Load CD = 0 CD = 0.5 CD = 1

0.1 0.18% 0.00% 0.00%
0.2 2.16% 0.00% 0.00%
0.3 5.09% 0.01% 0.00%
0.4 7.12% 0.02% 0.00%
0.5 8.91% 0.05% 0.00%
0.6 10.27% 0.11% 0.00%
0.7 12.12% 0.27% 0.00%

Table 2: Deadline Missing Rates of Jobs

System Load CD = 0 CD = 0.5 CD = 1

0.1 0.0000% 0.0000% 0.0000%
0.2 0.0000% 0.0000% 0.0002%
0.3 0.0000% 0.0001% 0.0004%
0.4 0.0000% 0.0003% 0.0022%
0.5 0.0000% 0.0038% 0.0078%
0.6 0.0000% 0.0079% 0.0431%
0.7 0.0000% 0.1290% 0.3631%

Fig. 4: Successful-execution rates of jobs Fig. 5: Total profit of providers

Table 3: Total Penalty of Providers

System Load CD = 0 CD = 0.5 CD = 1

0.1 0.00 0.00 0.00
0.2 0.00 0.00 0.18
0.3 0.00 0.97 2.83
0.4 0.00 9.75 19.09
0.5 0.00 50.00 86.40
0.6 0.00 375.06 625.00
0.7 0.00 2970.00 6425.89

313RAO & MAHESWAR, Orient. J. Comp. Sci. & Technol., Vol. 4(2), 305-315 (2011)

system load is 0.7, the failure rate is above 10
percent. Table 2 s about the deadline missing rate.
When CD is equal to 0, jobs executed never miss
their deadlines. As providers get more aggressive
and the system load is heavier, the deadline missing
rate increases. However, even when the system
load is 0.7 and CD is equal to1, the deadline missing
rate is under 1 percent. The successful execution

Fig. 6: The fairness deviation of providers

Fig. 7: Analysis of IB on
the successful-execution rate

rate θ can be calculated with the following:

θ= (1 - ζ) * (1 – η)

 For providers, first we study how CD impacts
the total penalty, sum of penalty paid by all the
providers. Table 3 shows the results. Apparently,
as CD and the system load increase, the total
penalty gets bigger, which is consistent with the
observation about the deadline missing rate? The
more meaningful metric is the net profit.

Fig. 8: Analysis of IB on the fairness deviation

Fig. 5 shows the simulation results of this.
Conservative providers never need to pay the
penalty, but they lose potential jobs because of their
conservative attitude. Thus, the total profit\it is not
very satisfactory. The results show that a trade-off
attitude, that is, CD is equal to 0.5, is superior to the
extreme two. Our performance objective for
providers is to minimize the fairness deviation ó.
Fig 6 shows the results.

Fig. 6 indicates that aggressive competition
can achieve the most desirable fairness. Our price-
adjusting algorithm tries reasonable allocation the
job length among all the providers. However, profits
are related not only to the length of jobs offered but
also to the price. Intuitively, when CD is equal to 1,
providers compete aggressively with each other, and
resources are always sold at a low base price.
However, in the case that providers are more
conservative, the price tends to be more diverse.
Altogether, within the tested system load, the
fairness deviation is under 0.01.

Study the effectiveness of the price-
adjusting algorithm and the CD-adjusting algorithm.
We work out the simulation results of the incentive-
based scheduling scheme without adjusting the
price and CD separately, and we compare them
with that of the complete incentive based scheduling
scheme. Fig. 7 and 8 show the results. It is obvious
that the two algorithms complement each other and
are both indispensable. When disabling the CD-
adjusting algorithm and the system load is high,
our incentive-based scheduling scheme achieves
poor performance. It can be explained that those
more aggressive providers keep getting more jobs,

314 RAO & MAHESWAR, Orient. J. Comp. Sci. & Technol., Vol. 4(2), 305-315 (2011)

more of which they fail to finish before their
deadlines because of the heavy system load. A
higher deadline kissing rate results in more penalty,
finally lower successful-execution rate, and, worse,
fairness.

CONCLUSIONS

In this paper, we develop an incentive-
based scheduling scheme with heuristics, using a
P2P decentralized scheduling framework and
Incentive-based scheduling algorithms. This
scheme has the following features:1) each
consumer or provider autonomously makes
scheduling decisions, 2) all scheduling algorithms

are local to a resource provider, and 3) three market
instruments, that is, job announcement, price, and
CD, are employed, and the former two circulate in
the grid. This paper has two major contributions.
First, we have defined incentive as scheduling
objective for a decentralized market-like
computational grid, and the incentive is two-fold,
not only for consumers but also for providers.
Second, we have studied how the competition
attitude of providers influences the performance of
scheduling. With further work, The Scheduling
Scheme performs only Java Programme, it can be
also extend to other Programmes like Oracle, C,
C++ etc.,. In future it can be developing MAN &WAN.

1 Lijuan Xiao, Yanmin Zhu, Lionel M. Ni and
Zhiwei Xu. “GridIS: an Incentive-based Grid
Scheduling” Institute of Computing
Technology, Chinese Academy of Science
Beijing 10080, China (2005).

2 Berman F. Wolski, H. Casanova, W. Cirnr, H.
Dail, M. Faerman, F. Figueira, J. Hayes, G.
Obertelli, J. Schopf, G. Smallen,, N. Spring,
“Adaptive Computing on the Grid Using
Apples, IEEE Trans. Parallel and Distrubuted
System, 14(4): 369-382 (2003).

3 Malone T.W, Fikes R.E, Gran K.R, and
Howard M.T, “Enterprise: A Market-Like Task
Scheduler for distributed Computing
Environments”, The Ecology of
Computation, B.A. Hubermen, ed., 177-205
(1988).

4 Buyya R. Abramson D. and Venugopal S.
“The Grid Economy” Proc. IEEE, 93: 698-
714 (2005).

5 Lai K. Rasmusson L. Adar E. Zhang L. and
Huberman B.A. “Thcoon: An Implementation
of a Distributed, Market-Based Resource
Allocation System,” Multiagent and Grid
Systems, 1(3): 169-182 (2005).

6 Xiao L. Zhu L.M.Ni. and Xu Z. “GridIS: An
Incentive-Based Grid Scheduling,” Proc. 19th

IEEE Parallel and Distributed Processing
Symp. (IPDPS’05), 65 (2005).

7 Liu Y. Zhuang Z. Xia, L. and Ni L.M. “A
Distributed Approach to Solving Overlay

REFERENCES

Mismatching Problem,” Proc.24th IEEE Int’l
Conf. Distributed Computing Ssytems
(ICDCS’04), 132-139 (2004).

8 Zhu Y. Xiao L. Ni L.M., and Xu Z., “Incentive-
Based P2P Scheduling in Grid Computing,”
Proc. Of Grid and Cooperative Computing,
3251/2004: 209 (2004).

9. Nazareno Andrade, Lauro Costa, Guilherme
Germoglio, Walfredo Cirne., “Peer-to-Peer
Grid Computing with OurGrid Community,”
Lanoratorio de sistemas Distribuidos –
Universidade Federal de Campina Grande,
Av. Aprigio Veloso, 882 Bloco CO,
Bodocongo-58. 109-970, Campina Grande,
PB, Brasil.

10. Saroiu S., Gummadi P.K., and Gribble, S.D.,
A Measurement Study of Peer-to Peer File
Sharing Systems. In PJroc. Multimedia
Computing and Networking 2002
(MMCN’02), san Jose CA, USA (2002).

11. Tan Tien Ping, Gian Chan Sodhy, Chan Huah
Youg, Fazilah Haron and Rajkumar Buyya,
“A Market-Based Scheduler for JXTA-Based
Peer-to Peer Computing System,”School of
Computer Science Universiti Sains Malaysia,
11800 Penang, Malaysia.

12. Vijay Subramani, Rajkumar Kettinuthu
Srividya, Srinivasan P. Sadayappan,
“Distr ibuted Job Scheduling on
Computational Grids using Multiple
Simultaneous Requests,” Proc. Of the 11th

315RAO & MAHESWAR, Orient. J. Comp. Sci. & Technol., Vol. 4(2), 305-315 (2011)

IEEE International Symposium of High
Performance Distrubuted Computing HPDC-
11 20002 (HPDC’02), Scoltland (2002).

13. Parashar .M and Lee C.A. Proc. IEEE, special
issue on grid computing, eds., 93(3): 479-
714 (2005).

14. Foster I. and Kesselman C, “Globus: A Meta
Computing Infrastructure Toolkit” Int’l J. High-
Performance Computing Applications, 11(2):
115 (1997).

15. Litzkow M. Livny M. and Mutka M., “Condor:
A Hunter of Idle Workstations,” Proc. Eighth
Int’l Conf. Distributed Computing systems
(ICDCS’88), 104-111 (1988).

16. Chapin S.J. Katramatos D. Karpovich J. and
Grimshawn A., “ Resource Management in
Legion,” Future Generation systems,
15(5-6): 583-594 (1999).

17. Casanova H. and Dongarra J., “NetSlove: A
Network Server for Solving Computational
Science Problems,” Int’l J. Supercomputer
applications and High-Performance
Computing, 11(3): 212-223 (1997).

18. Waldspurger C.A., Hogg T. Huberman B.A .,
Kephart J.O. and Stometta S. “Spawn: A
Distributed Computational Economy,” IEEE
Trans. Software Eng., 18(2): 103-177 (1992).

19. Buyya R., Abramson D., and Venugopal S., “
The Grid Economy,” Proc. IEEE, 93(3):
693-714 (2005).

20. Regev O., and Nisan N., “ The POPCORN
Market: An Online Market for Computational

Resources,” Proc. First Int’l Conf. Information
and Computation Economics (ICE’98),
148-157 (1998).

21. Wolski R., Pland J.S., Bryan T., and Brevik
J., “G-Commerce: Market Formulations
Controlling Resource Allocation on the
Computational Grid,” Proc. 15th Int’l Parallel
and Distr ibuted Processing Symp.
(IPDPS’01), 8 (2001).

22. Padala P., Harrison C., Pelfort N., Jansen.,
E., Frand M.P., and Chokkareddy C.,
“OCEAN: The Open Computation Exchange
and Arbitration Network, a Market Approach
to Meta Computing,” Proc. Second Int’l
Symp. Parallel and Distributed Computing,
185-192 (2003).

23. Sherwani J., Ali N., Lotia N., Hayat Z., and
Buyya R., “Libra: A Computational Economy-
Based Job Scheduling System for Clusters,”
Software: Practice and Experience, 34(6):
573-590 (2004).

24. Irwin D.E., Grit L.E., and Chase J.S.,
“Balancing Risk and Reward in a Market-
Based Task Service,” Proc. 13th Int’l Symp.
High Performance Distributed Computing
(HPDC’04), 160-169 (2004).

25. Yun F., Jeffrey C., Brent C., Stejphen S., and
Amin V., “SHARP: An Architecture for Secure
Resource Peering,” Proc. 19th ACM Symp.
Operating Systems Principles (SOSP’03), pp.
133-148 (2003).

