
INTRODUCTION

Software testing is an important means of
assessing software quality.

Program testing is a rapidly maturing area
within software engineering that is receiving
increasing attention from both computer science
theoreticians and practitioners. Its general aim is to
affirm the quality of software systems by

ORIENTAL JOURNAL OF
COMPUTER SCIENCE & TECHNOLOGY

www.computerscijournal.org

ISSN: 0974-6471
December 2011,

Vol. 4, No. (2):
Pgs. 281-292

An International Open Free Access, Peer Reviewed Research Journal

Design Architecture Class Diagram
for a Comprehensive Testing Tool

SARITA SINGH BHADAURIA¹*, ABHAY KOTHARI² and LALJI PRASAD³

¹MITS /Department of Electronics,Gwalior (India).
²IIST/ Computer Engineering, Indore (India).

³TRUBA College of Engineering and Technology/ Computer Science and Engineering, Indore (India).
*Corresponding author: saritamits66@yahoo.co.in

(Received: October 04, 2011; Accepted: October 06, 2011)

ABSTRACT

Object-orientation involving class and object concepts and their properties play an important
role in constructing any object-orientated system. In this research work, a comprehensive class
diagram is provided that may help in designing a comprehensive software testing tool. A requirement
specification for a comprehensive software testing tool is established that would involve studying
the feature set offered by existing software testing tools, along with their limitations. The requirement
set thus developed will be capable of overcoming the limitations of the limited feature sets of
existing software tools and will also contribute to the design of a comprehensive architecture class
diagram for a software testing tool that includes most of the features required for a software testing
tool (most of the testing techniques came from procedural and object-oriented programming
system development). In addition, because different user interfaces are provided by different
tools, an effort has been made to use them in the present system that is being designed.

Key words: Software architecture, Class level architecture,
Fault-based testing, and Scenario-based testing.

systematically exercising the software in carefully
controlled circumstances10.

Testing often consumes 40%-50% of
development efforts, and it consumes more effort
for systems that require higher levels of reliability.
Testing is a significant portion of the software
engineering process. With the development of fourth
generation languages (4GL), which speeds up the
implementation process, the proportion of time

282 BHADAURIA et al., Orient. J. Comp. Sci. & Technol., Vol. 4(2), 281-292 (2011)

devoted to testing is decreasing. As the amount of
maintenance and upgrade work for existing
systems grows, a significant amount of testing will
also be needed to verify systems after changes are
made24.

Class diagrams are widely used to
describe the types of objects in a system and their
relationships. Class diagrams model class structure
and contents using design elements such as
classes, packages and objects. Class diagrams
describe three different perspectives when
designing a system conceptual, specification and
implementation. These perspectives become
evident as the diagram is created and help solidify
the design.

The remainder of the paper is organized
as follows: Section 2 introduces object-oriented
software engineering and presents the various
stages of testing. Section 3 discusses the literature
survey Section 4 presents various artifacts related
to class testing. Section 5 presents the objectives
of this research. Section 6 presents the preliminary
class architecture, and section 7 presents the
conclusion and future work.

Object Oriented Testing
An object is an entity composed of data

and procedures. The procedures, referred to as
methods, implement the operations on the object’s
data. Each object has a state, an identity, and a
behavior. The definition of the type of object is a
description of its capabilities. Object-oriented testing
focuses on the states of the objects and their
interactions. In an object-oriented testing system,
classes play important roles, classes are the
smallest testable units, and they provide an
excellent structuring mechanism. They allow a
system to be divided into well-defined units that
can then be implemented separately. Second,
classes support information-hiding. A class can
export a purely procedural interface and the internal
structure of the data may be hidden. This allows the
structure to be changed without affecting users of
the class, thus simplifying maintenance. Third,
object-orientation encourages and supports
software reuse. This may be achieved either through
the simple reuse of a class in a library, or via
inheritance, whereby a new class may be created

as an extension of an existing one. The behavior of
inherited methods can be changed because of
methods that are called within methods must be
tested per class.

Unlike conventional test case design,
which is driven by an input-process-output view of
software or the algorithmic detail of individual
modules, object-oriented testing focuses on
designing appropriate sequences of operations to
exercise the states of a class. Object-oriented
software is developed incrementally with iterative
and recursive cycles of planning, analysis, design,
implementation and testing .Testing plays a special
role here, because it is performed after each
increment19,20.

The Major Stages of Research and Development
Trends in Object Oriented System Architecture
and Testing (Literature survey)

Generally, we see three major stages in
the research and development of testing
techniques, each with a different trend. By trend,
we mean how mainstream of research and
development activities find the problems to solve
and how they solve the problems. As described
below, technology evolution involves testing
technique technologies. The technique used for
selecting test data has progressed from an ad hoc
approach, through an implementation-based
phase, and is now specification based. The literature
survey includes the solution approaches of various
research studies that dealt with problems related
to testing methods and issues in the design of
testing tools for various circumstances.

Literature Survey
[BBL97] A framework for probabilistic

functional testing is proposed in this paper. The
authors introduce the formulation of the testing
activity, which guarantees a cer tain level of
confidence into the correctness of the system under
test. They also explain how one can generate
appropriate distributions for data domains,
including most common domains, such as intervals
of integers, unions, Cartesian products, and
inductively defined sets. A tool assisting test-case
generation according to this theory is proposed.
The method is illustrated on a small formal
specification5.

283BHADAURIA et al., Orient. J. Comp. Sci. & Technol., Vol. 4(2), 281-292 (2011)

[Beizer90] This book gives a fairly
comprehensive overview of software testing that
emphasizes formal models for testing. The author
provides a general overview of the testing process
and the reasons and goals for testing. In the second
chapter of this book, the author classifies the
different types of bugs that could arise in program
development. The notion of path testing, transaction
flow graphs, data-flow testing, domain testing, and
logic-based testing are introduced in detail. The
author also introduces several attempts to quantify
program complexity and a more abstract discussion
involving paths, regular expressions and syntax
testing. The implementation of software testing
based on these strategies is also discussed4.

[BG01] Testing becomes complicated with
features, such as the absence of component source
code, that are specific to component-based
software. This paper proposes a technique
combining both black-box and white-box strategies.
A graphical representation of component software,
called a component-based software flow graph
(CBSFG), which visualizes information gathered
from both specification and implementation, is
described. It can then be used for test-case
identification based on well-known structural
techniques7.

[BIMR97] In this paper the authors use
formal architectural descriptions (CHAM) to model
the behaviors of interest of the systems. A graph of
all the possible behaviors of the system in terms of
the interactions between its components is derived
and further reduced. A suitable set of reduced
graphs highlights the specific architectural
properties of the system, and can be used for the
generation of integration tests according to a
coverage strategy, analogous to the control and
data flow graphs in structural testing3.

[GG75] This paper is the first published
paper that attempted to provide a theoretical
foundation for testing. The “fundamental theorem
of testing” proposed by the authors characterizes
the properties of a completely effective test selection
strategy. The authors argue that a test selection
strategy is completely effective if it is guaranteed to
discover any error in a program. As an example,
the effectiveness of branch and path testing in

discovering errors is compared. The use of a
decision table (a mixture of requirements and
design-based functional testing) as an alternative
method is also proposed12.

[GH88] In this article, the evolution of
software test engineering is traced by examining
changes in the testing process model and the level
of professionalism over the years. Two phase
models, the demonstration and destruction models,
and two life cycle models, the evolution and
prevention models, are provided to characterize
the growth of software testing with time. Based on
the models, a prevention-oriented testing
technology is introduced and analyzed in detail11.

[HIM00] Unified Modeling Language
(UML) is widely used for the design and
implementation of distributed, component-based
applications. In this paper, the issue of testing
components by integrating test generation and test
execution technology with commercial UML
modeling tools such as Rational Rose is addressed.
The authors present their approach to modeling
components and interactions and describe how test
cases are derived from these component models
and then executed to verify their conformant
behavior. The TnT environment of Siemens is used
to evaluate the approach by examples13.

[Howden76] The reliability of path testing
provides an upper bound for the testing of a subset
of a program’s paths, which is always the case in
reality. This paper begins by showing the
impossibility of constructing a test strategy that is
guaranteed to discover all errors in a program. Three
commonly occurring classes of errors,
computations, domain, and sub case, are
characterized. The reliability properties associated
with these errors affect how path testing is defined16.

[Howden80] The usual practice of
functional testing is to identify functions that are
implemented by a system or program from
requirement specifications. In this paper, the
necessity of design testing and requirement
functions is discussed. The paper indicates how
systematic design methods, such as structured
design and the Jackson design, can be used to

284 BHADAURIA et al., Orient. J. Comp. Sci. & Technol., Vol. 4(2), 281-292 (2011)

construct functional tests. Structured design can be
used to identify the design functions that must be
tested in the code, while the Jackson method can
be used to identify the types of data that should be
used to construct tests for those functions17.

[Huang75] This paper introduces the basic
notions of dynamic testing based on a detailed path
analysis in which full knowledge of the contents of
the source program being tested is used during the
testing process. Instead of the common test criteria
in which every statement in the program is executed
at least once, the author suggested and
demonstrated with an example that a better criterion
is to require that every edge in the program diagram
be exercised at least once. The process of
manipulating a program by inserting probes along
each segment in the program is suggested in this
paper14.

[JM94] Many models exist for estimating
and predicting the reliability of software systems,
most of which consider a software system as a black
box and predict the reliability based on the failure
data observed during testing. In this paper, a
reliability model based on the software structure is
proposed. The model uses the number of times a
particular module is executed as the main input. A
software system is modeled as a graph, and the
reliability of a node is assumed to be a function of
the number of times it gets executed during testing–
the larger the number of times a node gets executed,
the higher its reliability. The reliability of the software
system is then computed through simulation by
using the reliabilities of the individual nodes18.

[Marciniak94] A book intended for
software engineers, this book gives introductions,
overviews, and technical outlines of the major areas
in software engineering. A review of test generators
is provided in which the major types of test case
generators are given and their intended purpose
and principles are discussed. A review of the testing
process is given in which the entire process of
testing is discussed from planning to execution to
achieving to maintenance retesting. All of the
common terms and ideas are discussed. A review
of testing tools is provided in which the testing tool
for each purpose is discussed and several state-
of-the-art systems are described23.

 [Miller81] This article serves as one of the
introductory sections of the book Tutorial: Software
Testing and Validation Techniques. A cross section
of program testing technology before and around
the year 1980 is provided in this book, including
the theoretical foundations of testing tools and
techniques for static analysis and dynamic analysis
effectiveness assessment management and
planning and the research and development of
software testing and validation. The article briefly
summarizes each of the major sections and provides
a general overview of the motivation forces, the
philosophy and principles of testing, and the
relationship between testing and software
engineering22.

[ROT89] This paper proposes one of the
earliest approaches focusing on utilizing
specifications in selecting test cases. In traditional
specification-based functional testing, test cases
are selected by hand based on a requirement
specification, which means functional testing merely
includes heuristic criteria. Structural testing has an
advantage in that the applications can be
automated and the satisfaction determined. The
authors propose approaches to specification-
based testing by extending a wide variety of
implementation-based testing techniques to formal
specification languages, and they demonstrate
these approaches for the Anna and Larch
specification languages25.

[RR85] In this paper, a variety of software
technologies are reviewed. The technology
maturation process by which a piece of technology
is created is described: first, an idea is formulated
and preliminarily used; it is then developed and
extended into a broader solution and finally
enhanced to product-quality applications and
marketed to the public. The time required for a piece
of technology to mature is studied, and the actions
that can accelerate the maturation process are
addressed. This paper serves as a strong framework
for technology maturation study29.

[RW85] A family of test data selection
criteria based on data flow analysis is defined in
this paper. The authors contend that data flow
criteria are superior to current path selection criteria
in that when using the latter strategy, program errors

285BHADAURIA et al., Orient. J. Comp. Sci. & Technol., Vol. 4(2), 281-292 (2011)

can go undetected. The definition/use graph is
introduced and compared with a program graph
based on the same program. The interrelationships
between these data flow criteria are also
discussed28.

[Shaw90] Software engineering is still
in the process of becoming a true engineering
discipline. This article studies the model for the
evolution of an engineering discipline and
applies it to software technology. Five basic
steps are suggested for the software profession
in creat ing a t rue engineer ing discipl ine:
understanding the nature of exper t ise,
recogniz ing d i f ferent ways to obta in
information, encouraging routine practice,
expecting professional specializations, and
improving the coupling between science and
commercial practice. The significant shifts in
software engineering research since the 1960s
are also discussed in this article31.

[WC80] Domain errors are in the subset
of the program input domain and can be caused
by incorrect predicates in branching statements
or incorrect computations that affect variables
in branching statements. In this paper, a set of
constraints under which it is possible to reliably
detect domain errors is introduced. The paper
develops the idea of linearly bounded domains.
The practical limitations of the approach are also
discussed, the most severe of which is
generating and then developing test points for
all boundary segments of all domains of all
program paths33.

[Whit00] As a practical tutorial article, this
paper answers questions from developers about
how bugs escape testing. Undetected bugs come
from executing untested code, differences in the
order of executing, combinations of untested input
values, and untested operating environments. A
four-phase approach is described in answering the
questions. By carefully modeling the software’s
environment, selecting test scenarios, running and
evaluating test scenarios, and measuring testing
progress, the author offers testers a structure for
the problems they want to solve during each
phase32.

[Poston 2005]
Here we summarize their work
´ Integration of all the data across tools and

repositories.
´ Integration of control across the tools.
´ Integration to provide a single graphical

interface for the test tool set.

Limitation
It emphasizes only integration tools

(usability and portability)27.

[Rosenberg 2008] The approach to
software metrics for object-oriented programs must
be different from the standard metric sets. Some
metrics, such as line of code and cyclomatic
complexity, have become accepted as standard for
traditional functional/procedural programs.
However, for object-oriented scenarios, there are
many proposed object-oriented metrics in the
literature.

Limitation
This provides only a conceptual framework

for measurement26.

[Agrawal 2007] As per this paper the
importance of software measurement is increasing
which is leading to the development of new
measurement techniques [2].

Limitation
a) In this research, object-oriented metrics

does not provide any relationship between
requirements and testing attributes.

b) In this research, object-oriented metrics
cannot be evaluated for large data sets.

“Software quality is another focus of our
research. Metrics fall into two categories: the
productivity and the quality. Most of our object
oriented metrics are quality related. We wish to
achieve good maintainability, reusability, flexibility
and portability in the architecture of the software
testing tool under construction”.

[Anderson 2005] They emphasize that the
software industry has performed a significant
amount of research on improving software quality
using software tools and metrics that will improve

286 BHADAURIA et al., Orient. J. Comp. Sci. & Technol., Vol. 4(2), 281-292 (2011)

the software quality and reduce the overall
development time. Good-quality code will also be
easier to write, understand, maintain and upgrade
[1].

Limitation
a) In this research, object-oriented metrics does

not provide any relationships between
requirement testing attributes.

b) In this research, object-oriented metrics does
not provide full-featured testing tools (only
complexity and cohesion measures).

c) In this research, object-oriented metrics
provides only a conceptual framework for
measurement.

[Briand 1999] This paper shows that the
relationships between most of the existing coupling
and cohesion measures for object-oriented (OO)
systems and the fault proneness of object-oriented
system classes can be studied empirically [6].

Limitation
Only emphasizes cohesion and coupling

metrics.

[Bitman 1997] This research defines a key
problem in software development: changing
software development complexity and the method
to reduce complexity8.

Limitation
It provides only a complexity

measurement technique.

[Harrison 1998] Coupling is the degree of
interdependence between two modules. In a good
design coupling is kept to a minimum. Coupling
should be low in a large and complex system. No
coupling is highly desirable, but this is not possible
in practice. The strengths and weaknesses of
different types of coupling are discussed15.

Limitation
Only cohesion and coupling metrics are

emphasized.

[Chidambaram & Kemerer 1994]
The coupling between the object (CBO)

metric of Chidambaram and Kemerer are evaluated

for five object-oriented systems and compared with
an alternative design metric called NAS that
measures the number of associations between a
class and its peers (Harrison R.S). The NAS metric
is directly collectible from design documents, such
as the object model9.

Limitation
a) No relationship between requirements and

testing attributes is provided.
b) A basic idea of the size and effort estimation

is not provided.
c) Measuring the complexity of a class is

subject to bias.

Artifacts of Class Testing
In this section, we refer to several of the

attributes of object-oriented systems and discuss
the different testing techniques suitable for object-
oriented software systems. Attributes play an
important role in making object-oriented software24.

Encapsulation
Wrapping data and functions into a single

unit is known as encapsulation. This restricts the
visibility of object states and restricts the
observability of intermediate test results. Fault
discovery is more difficult in this case.

Inheritance
The mechanism of deriving a new class

from an old one is called inheritance. The old class
is referred to as the base class, and the new one is
called the derived class or the subclass. Inheritance
results in invisible dependencies between super/
sub-classes. Inheritance results in reduced code
redundancy, which results in increased code
dependencies. If the function is erroneous in the
base class, it will also be inherited in the derived
class. A subclass cannot be tested without its super-
classes. Abstract classes cannot be tested at all.

Polymorphism
Polymorphism is one of the crucial features

of OOP. It simply means that one name represents
multiple forms. Because of polymorphism, all
possible bindings must be tested. All potential
execution paths and potential errors must be tested.
Testing begins by evaluating the OOA and OOD
models. Object-oriented analysis models can be

287BHADAURIA et al., Orient. J. Comp. Sci. & Technol., Vol. 4(2), 281-292 (2011)

tested using the collected requirements and use
cases. Object-oriented design can be tested by
using the class and sequence diagrams. Structured
walkthroughs and reviews should be conducted to
ensure correctness, completeness and
consistency.

Object–oriented programming is centered
on concepts such as Object, Class, Message,
Interfaces, Inheritance, and Polymorphism.
Traditional testing techniques can be adopted in
object-oriented environments by using the following
techniques:
´ Function-based testing.
´ Class testing.
´ Integration testing.
´ Fault-based testing.
´ Scenario-based testing.

Function-based Testing
Like conventional (traditional) testing,

function-based testing is based on product
requirements and specifications.

Class Testing
Class testing is performed on the smallest

testable unit in the encapsulated class. As part of a
class hierarchy, each operation must be tested
because its class hierarchy defines its context of
use. New methods, inherited methods and redefined
methods within the class must be tested. This testing
is performed using the following approaches:
• Test each method (and constructor) within a

class.
• Test the state behavior (attributes) of the

class between methods.

Class testing is different from conventional
testing in that conventional testing focuses on input-
process-output, whereas class testing focuses on
each method. In addition to testing methods within
a class (either white box or black box). Test cases
should be designed so that they are explicitly
associated with the class and/or method to be tested.
The purpose of the test should be clearly stated.
Each test case should contain the following:
1. A list of messages and operations that will

be exercised as a consequence of the test.
2. A list of exceptions that may occur as the

object is tested.

3. A list of external conditions for setup (i.e.,
changes in the environment external to the
software that must exist in order to properly
conduct the test).

4. Supplementary information that will aid in
understanding or implementing the test.

Some challenge in object-oriented class testing21

Encapsulation
Difficult to obtain a snapshot of a class

without building extra methods that display the
classes’ state.

Inheritance and polymorphism
´ Each new context of use (subclass) requires

re-testing because a method may be
implemented differently (polymorphism).

´ Other unaltered methods within the subclass
may use the redefined method and need to
be tested.

White box tests
Basis path, condition, data flow and loop

tests can all apply to individual methods but do not
test interactions between methods.

Class-level testing can be classified into the
following parts
Random class testing

Identify methods applicable to a class.
Define constraints on their use:
´ The class must always be initialized first.

Identify a minimum test sequence.
´ Choose an operation sequence that defines

the minimum life history of the class.
Generate a variety of random (but valid) test
sequences.

´ This exercises more complex class instance
life histories.

Partitioned-based testing
This approach reduces the number of test

cases required to test a class in much the same
way as equivalence partitioning for conventional
software for the following types of partitioned-based
testing:

State-based partitioning
Tests are designed such that operations

that cause state changes are tested separately from

288 BHADAURIA et al., Orient. J. Comp. Sci. & Technol., Vol. 4(2), 281-292 (2011)

Random- Based Testing

Private string id

public vo id run();

public vo id runt est();

public vo id setup();

Functional Testin g

priva te in t Id

priva te strin g name

virtual void run scenario();

virtual void run();

C lass-Based Te sting

p rivate s tring result

p ublicvoid run();

p ublic void runtest();

Partitioned-Based Testing

Private int id

public void setup();

public void compute();

Ca tego ry-Based Testing

in t id

public void setup();

public void compute();

Attribute-Based Testing

Void attribute

public void setup();

public void compute();

State-Based T esting

Void state

public void setup();

public void compute();

Fault-Based Testin g

private string error

public void operation class();

public void message class ();

public void unexpect ed();

Scenario-Based Testing

Private s tring erro r

public void se tup();

public void cleanu p();

Integration-Based

Testing

Priva te s tring
e xpected output

public void setup();

public void run test();

Thread-Ba sed Te sting

P rivate s tring
expected output

p ublic void setup();

p ublic void run test();

Cluster-Based Testing

Private string
expected output

pu blic void setup();

pu blic void run te st();

Use-Based Testing

Private s tring
expected output

public void setup();

public void run test();

Fig. 1: Class Architecture for the Testing Tool

those that do not cause any changes in the
state.

Attribute-based partitioning
For each class attribute, operations are

classified according to those that use the attribute,
modify the attribute and do not use or modify the
attribute.

Category-based partitioning
Operations are categorized according to

the function they perform:
i. Initialization.
ii. Computation
iii. Query
iv. Termination

Integration Testing
OO does not have a hierarchical control

structure, and thus, conventional top-down and
bottom-up integration tests have little meaning.
Integration testing can be applied in three different
incremental strategies:
´ Thread-based testing, which integrates

classes required to respond to one input or
event.

´ Use-based testing, which integrates classes
required by one use case.

´ Cluster testing, which integrates classes
required to demonstrate one collaboration.

Test cases should be designed so that they
are explicitly associated with the class and/or

289BHADAURIA et al., Orient. J. Comp. Sci. & Technol., Vol. 4(2), 281-292 (2011)

method to be tested. The purpose of the test should
be clearly stated. Each test case should contain the
following:
• A list of messages and operations that will

be exercised as a consequence of the test.
• A list of exceptions that may occur as the

object is tested.
• A list of external conditions for setup (i.e.,

changes in the environment external to the
software that must exist in order to properly
conduct the test).

• Supplementary information that will aid in
understanding or implementing the test.

Fault–based Testing
Any product must conform to customer

requirements. Hence, testing should begin with the
analysis model itself to uncover errors. Fault–based
testing is the method used to design tests that have
a high probability of finding probable errors in the
software [24]. Fault–based testing should begin with
the analysis and design models. This type of testing
can be based on specifications (e.g. user’s
manuals) or the code. It works best when based on
both.

Scenario–based Testing
Scenario-based testing concentrates on

what the customer does, not what the product does.
It means capturing the tasks (use cases, if you will)
that the customer has to perform and then using
them and their variants as tests. Of course, this
design work is best performed before the product
is implemented. It is really an offshoot of a careful
attempt at “requirements elicitation”. These
scenarios will also tend to flush out interaction bugs.
They are more complex and more realistic than
fault-based tests. They tend to exercise multiple
subsystems in a single test, precisely because that
is what users do. The tests will not find everything,
but they will at least cover the higher-visibility
interaction bugs24.

Objective of Research
This research work consists of the

following:
• Designing an object-oriented testing

architecture template at the class diagram
level.

• Using this architecture we represent different

operations for each testing technique and
associated different attributes using certain
testing technique operations with other
testing operations (from a set of operations
it is capable of performing, it changes its
attribute values, which may cause changes
to the attribute values of other objects).

Preliminary Class Architecture
The outcome of the present work is shown

in figure1, and the necessary discussion of the
testing concepts involved is given here. In figure1,
object-oriented testing is divided into three parts
based on their functionality.

The first category consists of functional
testing, class testing and its derived classes. This
category is directly based on the requirements and
specifications of software products, which involves
the following:
1. Input the functional specification for function

level testing of any testing tools.
2. Accordingly, functional specifications

construct class-level testing.
3. Class level testing is dividing into two parts-

partitioning class testing and random testing.

Partitioning-based testing and random
testing are derived from class-level testing and uses
some properties of class testing.

In the second category, integration-based
testing is further divided into three parts-threads,
cluster and use-based testing:
1. Thread-based testing integrates the set of

classes required to respond to one input or
event for the system. Each thread is
integrated and tested individually.

2. Use-based testing begins the construction
of the system by testing those classes (called
independent classes) that use very few (if
any) server classes. After the independent
classes are tested, the next layers of classes,
called dependent classes, that use the
independent classes are tested. This
sequence of testing layers of dependent
classes continues until the entire system is
constructed.

3. Cluster testing is one step in the integration
testing of OO software. Here, a cluster of

290 BHADAURIA et al., Orient. J. Comp. Sci. & Technol., Vol. 4(2), 281-292 (2011)

collaborating classes (determined by
examining the CRC and object-relationship
model) is exercised by designing test cases
that attempt to uncover errors in the
collaborations.

The third part consists of fault-based
testing and scenario-based testing
1. The objective of fault-based testing within

an OO system is to design tests that have a
high likelihood of uncovering plausible faults.
Because the product or system must conform
to customer requirements, the preliminary
planning required to perform fault-based
testing begins with the analysis model. The
tester looks for plausible faults (i.e., aspects
of the implementation of the system that may
result in defects). To determine whether these
faults exist, test cases are designed to
exercise the design or code.

2. Fault-based testing misses two main types
of errors:

(1) Incorrect specifications.
(2) Interactions among subsystems.

When errors associated with incorrect specifications
occur, the product does not do what the customer
wants. Scenario-based testing concentrates on
what the user does, not what the product does. This
means capturing the tasks (via use-cases) that the
user has to perform, then applying them and their
variants as tests. Scenarios uncover interaction
errors. However, to accomplish this, test cases must
be more complex and more realistic than fault-
based tests. Scenario-based testing tends to
exercise multiple subsystems in a single test.

CONCLUSION

The maturation of testing techniques has

been fruitful but not adequate. Pressure to produce
higher-quality software at lower cost is increasing,
and the existing techniques used in practice are
not sufficient for this purpose. Empirical studies and
fundamental research that addresses the
challenging problems, development of methods
and tools should be conducted so that we can
significantly improve the way we test software. The
successful use of these techniques in industrial
software development will validate the results of
the research and drive future research. The
pervasive use of software and the increased cost
of validating it will motivate the creation of
partnerships between industry and researchers to
develop new techniques and facilitate their transfer
to practice. Development of efficient testing
techniques and tools that will assist in the creation
of high-quality software will become one of the most
important research areas in the near future.

This research work, first establishes a total
set of requirement specifications for a
comprehensive software-testing tool. In an object-
oriented environment, these requirements will
address various testing methods and strategies for
object-oriented development scenarios. This work
will propose architectural design object-oriented
paradigms that will satisfy the established
requirements specifications. These designs can be
further translated into practical industrial tools.

Future Work
In addition, this study will propose a class

diagram to use, which will be relevant for obtaining
measurements of the proposed architectures.
These measurements will be used to draw
inferences for understanding the behavior of the
metrics in relation to the proposed architectures for
improving the designs by optimizing their quality.

REFERENCES

1. Anderson John L. Jr., “How to Produce Better
Quality Test Software”, IEEE Instrumentation
& Measurement Magazine, (2005).

2. Agarwal K. K., Sinha Y., Kaur A. and Malhotra
R.,” Exploring Relationships among coupling

metrics in object oriented systems. Journal
of CSI 37(1): (2007).

3. Bertolino A., Inverardi ‘P., Muccini H. and
Rosetti A., “An approach to integration testing
based on architectural descr iptions,”

291BHADAURIA et al., Orient. J. Comp. Sci. & Technol., Vol. 4(2), 281-292 (2011)

Proceedings of the IEEE ICECCS- 97, pp.
77-84.

4. Beizer B., “Software Testing Techniques,”
Second Edition, Van Nostrand Reinhold
Company Limited, ISBN 0-442-20672-0
(1990).

5. Bernet G., Bouaziz L. and LeGall P., “A Theory
of Probabilistic Functional Testing,”
Proceedings of the 1997 International
Conference on Software Engineering, pp.
216 –226 (1997).

6. Briand Lionel C. and Daly J., “A
Comprehensive Empirical Validation of
Design Measures for Object-Oriented
Systems”, Fraunhfer IESE, 1999.

7. Beydeda S. and Gruhn V., “An integrated
testing technique for component-based
software,” ACS/IEEE International
Conference on Computer Systems and
Applications, pp 328 – 334 (2001).

8. Bitman William R., “ Balancing software
composition & inheritance to improve
reusability cost & error rate”, Johns Hopkins
APL Technical Digest, 18 (1997).

9. Chidamber S. and Kemerer C., “A metrics
suite for object oriented design”, IEEE Trans.
Software Eng., 20: pp. 476-493, 1994.

10. Edward Miller and William E. Howden,
Tutorial: Software Testing & Validation
Techniques. IEEE Computer Society Press,
second edition, (1981).

11. Gelperin D. and Hetzel B., “The Growth of
Software Testing”, Communications of the
ACM, 31(6): pp. 687-695 (1988).

12. Goodenough J.B. and Gerhart L., “Toward a
Theory of Test Data Selection,” IEEE
Transactions on Software Engineering, June
pp. 156-173 (1975).

13. Hartmann J., Imoberdorf C. and Meisinger
M., “UML-Based Integration Testing,”
Proceedings of the International Symposium
on Software Testing and Analysis, ACM
SIGSOFT Software Engineering Notes,
(2000).

14. Huang J. C., “An Approach to Program
Testing,” ACM Computing Surveys, pp.113-
128 (1975).

15. Harrison R., Counsell S. and Nithi R.,

“Coupling metrics for object oriented design”,
Software metrics, symposium, MD, USA, 19
(1998).

16. Howden W. E., “Reliability of the Path
Analysis Testing Strategy”, IEEE
Transactions on Software Testing, 208-215
(1976).

17. Howden W. E., “Functional Testing and
Design Abstractions”, the Journal of System
and Software, 1: pp. 307-313 (1980).

18. Jalote P. and Muralidhara Y. R., “A coverage
based model for software reliability
estimation”, Proceedings of First
International Conference on Software
Testing, Reliability and Quality Assurance,
pp. 6 –10 (IEEE) (1994).

19. Jilles V. G., Object Oriented Testing Reports,
software verification and validation, DAD404,
IDE, University of karlskrona/Ronneby, 1998.

20. Kao G. M., Tang M. H. and Chen M. H.,
Investigating test effectiveness on object
oriented software - a case study. In
Proceedings of Twelfth Annual International
Software Quality Week, (1999).

21. Larman James Gain and Blank George, of
NJITplus Glenn Blank’s elaborations and
expansions. Notes from New Jersey Institute
of Technology, (2009).

22. Miller E. F., “Introduction to Software Testing
Technology”, Tutorial: Software Testing &
Validation Techniques, Second Edition, IEEE
Catalog No. EHO 180-0, pp. 4-16.

23. Marciniak J. J., “Encyclopedia of software
engineering”, Volume 2, New York, NY: Wiley,
pp.1327-1358 (1994).

24. Pressman Roger S., “Software Engineering
– A Practitioner’s Approach” McGraw Hill
International Edition sixth (2004).

25. Richardson D., O’Malley O. and Title C.,
“Approaches to specification-based testing”,
ACM SIGSOFT Software Engineering Notes,
14(9): 86-96 (1989).

26. Rosenberg Linda H., “Applying &
interpreting object oriented Metrics”, (2008).

27. Robert M. Poston, “Testing tool combines
best of new and old”, IEEE Software. March
(2005).

28. Rapps S. and Weyuker E. J., “Selecting

292 BHADAURIA et al., Orient. J. Comp. Sci. & Technol., Vol. 4(2), 281-292 (2011)

Software Test Data Using Data Flow
Information”, IEEE Transactions on Software
Engineering, pp. 367-375 (1985).

29. Redwine S. and Riddle W., “Software
technology maturation”, Proceedings of the
Eighth International Conference on Software
Engineering, 189-200 (1985).

30. Suganya G. and Neduncheliyan S., A Study
of Object Oriented Testing Techniques:
Survey and Challenges. IEEE Feb. pp: 1 – 5
(2010).

31. Shaw M., “Prospects for an engineering
discipline of software”, IEEE Software, pp.15-
24 (1990).

32. Whittaker J. A., “What is Software Testing?
And Why Is It So Hard?”, IEEE Software, pp.
70-79 (2000).

33. White L. J. and Cohen E. I., “A Domain
Strategy for Computer Program Testing”,
IEEE Transactions on Software Engineering,
247-257 (1980).

