
INTRODUCTION

All software developers have a main
purpose that is, producing qualitative software. But
there is no exact and specified definition of software
qualification that can be confirmed by all specialists.
Software qualification is not one-dimensional
content but is defined by a number of characteristics.
Considerable qualitative characteristics in software
system are presented in a semi-tree construction
called qualitative software model. Presented
qualitative models although have many common
points, are different in some contents and fields.
This research by investigating and comparing the
presented models, tries to make a better
comprehension of software qualification. This
analysis can make or provide an opportunity in order
to present new qualitative models especially for
software systems which have specific subjects. This
paper can provide a situation for stakeholders of
software systems to understand content
qualification better and to express their qualitative
requirements more completely and more exactly.
This essay after the introduction, investigate the
content qualification in software system.

Oriental Journal of Computer Science & Technology Vol. 4(1), 229-236 (2011)

Analysis of Framework on Evaluation of Qualitative Models of
Software Development System

ASHISH RASTOGI

Department of Computer Science, GG University, Bilaspur - 495 001 (India).

(Received: April 12, 2011; Accepted: June 04, 2011)

ABSTRACT

As we know that the Software market is growing very fast. The main purpose of the most
software producers is produce the software of very high Quality. Software quality is a multi-dimensional
content which is easily distinguishable and measurable. Although the Quality of the software is dependent
on Functional and Non Functional Requirement of the user. To determine this content more exact, the
qualitative models have been presented in which different aspects of this matter are investigated. But
the existences of different models and using different expressions have made the comprehension of
this content a little hard. In this research paper we try to introduce models and their analytical comparison,
determine software qualification and its qualitative characteristics more clearly.

Key words: Software Quality, Functional and Non Functional Requirement, Qualitative Models.

Related work
Although the term quality seems self-

explanatory in everyday usage, in practice there
are many different views of what it means and
how it should be achieved as part of a software
production process.

ISO Definitions
ISO 9000 is concerned with quality

assurance to provide confidence that a product will
satisfy given requirements.

Interpreted literally, this puts quality in the
hands of the person producing the requirements
specification a product may be deemed to have
quality even if the requirements specification is
inappropriate.

This is one of the interpretations of quality
reviewed by Garvin (1984). He describes it as
Manufacturing quality: a product which conforms
to specified requirements. A different emphasis is
given in ISO 8402 which defines quality as the
totality of characteristics of an entity that bear on
its ability to satisfy stated and implied needs. This

230 Rastogi, Orient. J. Comp. Sci. & Technol., Vol. 4(1), 229-236 (2011)

is an example of what Garvin calls Product quality:
an inherent characteristic of the product determined
by the presence or absence of measurable product
attributes.

In another study examining views of
quality, David Garvin studied how quality is
perceived in various domains, including philosophy,
economics, marketing, and operations
management. He concluded that “quality is a
complex and multifaceted concept” that can be
described from five different perspectives.
´ Transcendental View The transcendental

view sees quality as something that can be
recognized but not defined.

´ User View The user view sees quality as
fitness for purpose.

´ Manufacturing View The manufacturing view
sees quality as conformance to specification.

´ Product View The product view sees quality
as tied to inherent characteristics of the
product.

´ Value based view The value-based view sees
quality as dependent on the amount a
customer is willing to pay for it.

Many organisations would like to be able
to identify those attributes which can be designed
into a product or evaluated to ensure quality. ISO
9126 (1992) takes this approach, and categorises
the attributes of software quality as:
functionality, efficiency, usability, reliability,
maintainability and portability.

To the extent that user needs are well-
defined and common to the intended users this
implies that quality is an inherent attribute of the
product. However, if different groups of users have
different needs, then they may require different
characteristics for a product to have quality for their
purposes. Assessment of quality thus becomes
dependent on the perception of the user.

Evaluation Criteria
Chen-Burger formalized the rules and

guidelines for model constructions, which allowed
for a number of automated model critiques. The
following types of critiques are provided [CHEN98].
´ Correctness: detects structural, syntactic and

semantic errors

´ Completeness: identifies incomplete
information in the model and suggests which
missing concepts might need to be included.

´ Consistency: points out discrepancies in the
model.

´ Appropriateness: shows deviations from
standard practices.

´ Alternatives: searches for similar standard
models and presents them as alternatives
for a given modelling decision. (This is based
on a case library of known models.)

Criteria for Evaluating Methodologies and
Related Frameworks

Avison & Fitzgerald [AVIS95:435-437]
have an extensive list with areas of concern when
comparing methodologies, and suggest a large set
of requirements for the design of a methodology.
Many of these are based on other authors although
some of the original unpublished sources are difficult
to obtain. The following extracts only those
requirements which could also be considered
applicable to models. From Catchpole [CATC87],
who summarized the views of a number of other
authors in his PhD thesis:
´ Documentation easily understandable by

user & analysts.
´ Separate logical and physical designs.
´ Design validity checks for inconsistencies,

inaccuracies and incompleteness.
´ Easy change.
´ Teachability of method.
´ Draw/model the boundary between what

can/cannot be computerised explicitly.
´ Design for future change.
´ Effective communication.
´ Simplicity.
´ Ongoing relevance.
´ Automated development aids.
´ Consideration of user goals and objectives.
´ Systematic way of looking into the future to

incorporate possible future changes.
´ Integration of technical and non-technical

systems.

An Overview of Evaluation Frameworks
The following represents a selection of

frameworks for evaluating the quality of modelling
approaches and methodologies. Many of these can
be partially adapted to evaluate also the outcome

231Rastogi, Orient. J. Comp. Sci. & Technol., Vol. 4(1), 229-236 (2011)

Ta
b

le
 1

:
F

ac
to

rs
 a

re
 g

ro
u

p
ed

 i
n

to
 3

 m
aj

o
r

ca
te

g
o

ri
es

O
p

er
at

io
n

R
ev

is
io

n
Tr

an
si

ti
o

n

S
of

tw
ar

e
qu

al
ity

 m
et

ric
 /

C
or

re
ct

ne
ss

R
el

ia
bi

lit
y

E
ffi

ci
en

cy
In

te
gr

ity
U

sa
bi

lit
y

M
ai

nt
ai

na
bi

lit
y

F
le

xi
bi

lit
y

Te
st

ab
ili

ty
P

or
ta

bi
lit

y
R

eu
sa

bi
lit

y
In

te
ro

pe
ra

bi
lit

y

 Q
ua

lit
y

fa
ct

or

A
ud

ita
bi

lit
y

x

x

A

cc
ur

ac
y

x

C

om
m

un
ic

at
io

n
co

m
m

on
al

ity

x

C
om

pl
et

en
es

s
x

C
om

pl
ex

ity

x

x

x

C
on

ci
se

ne
ss

x

x

x

C

on
si

st
en

cy
x

x

x
x

D
at

a
co

m
m

on
al

ity

E
rr

or
 t

ol
er

an
ce

x

x
E

xe
cu

tio
n

ef
fic

ie
nc

y

x

E
xp

an
da

bi
lit

y

x

G
en

er
al

ity

x

x

x
x

H
ar

dw
ar

e
in

de
pe

nd
en

ce

x

x

In
st

ru
m

en
ta

tio
n

x

x

x

M

od
ul

ar
ity

x

x

x
x

x
x

x
O

pe
ra

bi
lit

y

x

x

S
ec

ur
ity

x

S

el
f

do
cu

m
en

ta
tio

n

x
x

x
x

x

S
im

pl
ic

ity

x

x
x

x

S
ys

te
m

 i
nd

ep
en

de
nc

e

x

x

Tr
ac

ea
bi

lit
y

x

Tr

ai
ni

ng

x

232 Rastogi, Orient. J. Comp. Sci. & Technol., Vol. 4(1), 229-236 (2011)

or product of a methodology or modelling process,
namely the resultant enterprise model. Many more
frameworks have been proposed but there is a high
degree of overlap between many of them. The
following frameworks are those from which I have
drawn my model quality evaluation criteria.

McCall’s Quality Factors / The GE model
McCall et al proposed a comprehensive

categorization of factors that affect software quality.
They distinguish clearly between the quality factor
and the quality metric which can be measured

directly or indirectly. The following table lists both,
as well as the correlation between them [PRES97c;
GILL97]. The factors which are grouped into
categories i.e revision, transition and operation are
summarized in Table 1.

ISO 9126
More recently, international efforts have led

to the development of a standard for software-quality
measurement, ISO 9126.The standards group has
recommended six characteristics to form a basic
set of independent quality characteristics (Fig. 1).

Fig. 1: Quality in the software lifecycle ISO 9126

The Following are the Quality
Characteristics of ISO 9126 :

Functionality
A set of attributes that bear on the existence
of a set of functions and their specified
properties. The functions are those that
satisfy stated or implied needs.

Reliability
A set of attributes that bear on the capability
of software to maintain its performance level
under stated conditions for a stated period
of time.

Usability
A set of attributes that bear on the effort
needed for use and on the individual
assessment of such use by a stated or
implied set of users.

Efficiency
A set of attr ibutes that bear on the
relationship between the software’s
performance and the amount of resources
used under stated conditions.

Maintainability
A set of attributes that bear on the effort
needed to make specified modifications
(which. may include corrections,
improvements, or adaptations of software to
environmental changes and changes in the
requirements and functional specifications).

Portability
A set of attributes that bear on the ability of
software to be transferred from one
environment to another (this includes the
organizational, hardware or Software
environment).

233Rastogi, Orient. J. Comp. Sci. & Technol., Vol. 4(1), 229-236 (2011)

The standard also includes a sample
quality model that refines the features of ISO 9126
into several subcharacteristics. The standard
recommends measuring the characteristics directly,
but does not indicate clearly how to do it. Rather,
the standard suggests that if the characteristic
cannot be measured directly (particularly during
development), some other related attribute should
be measured as a surrogate to predict the required
characteristic. However, no guidelines for
establishing a good prediction system are provided.

Although the ISO 9126 model is similar to
McCall’s, there are several differences. Clearly, the
ISO model uses a different quality framework and
termi- nology, and the term “quality characteristic”
is used instead of quality factor. The other elements
of the ISO framework (as defined in associated
guidelines) are: quality subcharacteristics to refine
the characteristic, indicators to measure quality
subcharacteristics, and data elements to construct
an indicator. (Indicators are usually ratios derived
from data elements. For example, the fault rate can
be defined as the ratio of number of faults to product
size.) In addition to the different terminology, there

are structural differences between the models.
Unlike earlier American models, the ISO framework
is completely hierarchical each subcharacteristic
is related to only one characteristic. Also, the
subcharacteristics relate to quality aspects that are
visible to the user, rather than to internal software
properties. Thus, the ISO model reflects more of a
user view, while the McCall model reflects more of
a product view.

The Böhm model
A fairly similar model was proposed by

Böhm, which contains very much the same
characteristics, although there are a number of
semantic nuances. The model has two levels, with
the intermediate level further split into primitive
characteristics which can be measured [BÖHM76].

Note that the emphasis of Böhm’s model
is, similarly to McCall’s, on the more technical
criteria. Hyatt summarizes both of the above and
maps their criteria against those mentioned in the
ISO 9126 standard, which defines and describes
the software product quality criteria more formally
[HYAT96].

Table 2: Software Quality Models [HYAT96]

Criteria/Goals McCall, 1977 Boehm, 1978 ISO 9126, 1993

Correctness X X Maintainability
Reliability X X X
Integrity X X
Usability X X X
Efficiency X X X
Maintainabiilty X X X
TestabilitY X Maintainability
Interoperability X X
Flexibility X X
Reusability X X
Portability X X X
Clarity X
Modifiability X Maintainability
Documentation X
Resilience X
Understandability X Maintainability
Validity X
Functionality
Generality X
Economy X

234 Rastogi, Orient. J. Comp. Sci. & Technol., Vol. 4(1), 229-236 (2011)

He uses these to build his own quality
framework. Very interesting are his suggested
metrics for measuring some of these quality
attributes. Two of these are also used in this
research: document structure and readability index.

IEEE Model
IEEE Institute, in fact, has given a scale and

standard to provide a qualitative model and has not
construction to show qualitative model and
emphasizes on how to design the measurement ways
of qualitative factors. This suggested construction is
semi-tree and has model it is allowed to define metrics
for any factors if there is a direct measurability after
the first level. For the first as follows:

Efficiency
Temporal economy and resource economy.

Function
Completeness, accuracy, security,
compatibility and interoperability.

Supportability
Testability, extensibility and correctability.

Portability
Independency from hardware, independency
from software.

Reliability
Nondeficiency, error tolerance and availability

Usability
Comprehensibility, ease of learning, usability,

Avison & Fitzgerald’s Framework for
Methodology Comparison

Avison & Fitzgerald [AVIS95:446-448]
have developed the following framework for
comparing methodologies, based on a number of
previous attempts and other authors such as Wood-
Harper. Although their approach resembles a
hierarchical structure, the authors describe it as a
framework because it takes contextual and
philosophical considerations into account. These
considerations include academic methodology
taxonomies, and the actual evaluation criteria for
each element depend on the methodology under
consideration. Each element is elaborated on in
much detail in the text. Their seven basic framework
elements, with sub-elements, are:
1. Philosophy

a. Paradigm: (hard) science versus (soft)
systems (see also [HIRS89]).

b. Objectives.
c. Domain.
d. Target: par ticular types/sizes of
organisations?

2. Model (verbal / analytical / iconic /
simulation).

3. Techniques and tools.
4. Scope (life cycle, level of detail).
5. Outputs.
6. Practice:

a. Background: academic or practioner/
commercial.
b. User base: numbers & types of users.
c. Players: users and/or analyst.

7. Product: Does it include: software?
Documentation? Training? Telephonic/online
help?

They also suggest two possible additional elements:
´ Quantity of specifications and
documentation.
´ User modifiability.

Problems with the Current Frameworks
There are a number of problems with the

application of the frameworks mentioned earlier. The
three major overall problems are:

The Grounding Problem
All lack a fundamental conceptual or

theoretical basis: the distinctions seem to be ad-
hoc, based on a natural grouping or structuring of
the desired factors but there is no underlying
theoretical or philosophical basis for the framework
dimensions. Refer to [FRAN99b] for the importance
of a strong theoretical grounding for an evaluation
framework instead of an ad-hoc approach.

The Partial Applicability Problem
Most of them apply only partially to the

evaluation of generic enterprise models. A lot of
criteria relate to the development process, which is
not applicable in our case.

The Lack of Generality Problem
None of the frameworks is generic in such

a way that they could be applied to evaluate the
quality of similar “intellectual works” in IS or any
other discipline i.e. there is no relationship between
these frameworks (say for measuring the quality of

235Rastogi, Orient. J. Comp. Sci. & Technol., Vol. 4(1), 229-236 (2011)

software) and any possible framework to evaluating,
say, models, systems architectures, products, or
artworks. This is partly due to their lack of theoretical
grounding. But even so, one would expect a quality
evaluation framework to have some applicability or
transferability to related domains.

Thus the challenge is to develop a
framework for evaluating enterprise models that has
sound theoretical foundations, is specific to the
evaluation of enterprise models yet can be ported
to similar domain or problem areas.

Our approach to Software Quality Model
Evaluation

To highlight some solutions of the above-
mentioned problems, we deal with the 9 steps
needed to apply our approach to software quality
evaluation, which solves some of the open issues.

Step by Step
The following steps highlight the main

ideas to implement software quality assessment
while considering human requirements.

Step 1
Choosing Category of People. We must

choose at least a person from the category of
people, hich our software evaluation will be
implemented for, for example: Programmers, End-
user.

Step 2
Identifying Sample Program. We must

choose a simple program (BP) to be considered as
sample evaluation set of our model.

Step 3
Building a Quality Model. The process of

building a quality model decomposes in two main

tasks generally : Choosing a super-characteristic
and Choosing and organizing characteristics related
to super characteristic10. In our case study, we
consider design patterns especially as bridge
between internal attributes of programs, external
quality characteristics, and software engineers.

Step 4
Human Evaluation. The small group, or at

least one person from the group, must look in the
program or product BP and evaluate the quality
characteristics we defined in our quality model, the
evaluation could be in form of numerical value or
different levels on a Lickert scale.

Step 5
Computing Software Metrics over BP. By

using software metrics we evaluate BP numerical
values related to software internal attributes.

Step 6
Machine Learning Tools.

Step 7
Computing Software Metrics over EP.

Software metrics are used to assess the values of
internal attributes over the EP in the same way as
they were for the evaluation of BP

Step 8
Adapting Metric.

CONCLUSION

There are various approaches available for
analyzing the framework for quality models.
Our approach is different from all other available
models. Some more experiments are needed to
implement it.

REFERENCES

1. Pressman, R.S., Software Engineering: A
Practitioner’ approach. McGraw-hill (2000).

2. Cavano, J.P. and J.A. McCall, A Framework
for the Measurement of Software Quality.
Procs. ACM Software Quality Assurance
Workshop, pp: 133-139 (1978).

3. Bevan, N., Quality in use: Meeting user
needs for quality. Journal of System and
Software, Elsevier., 49(1): 89-96 (1999).

4. ISO/IEC 9126, Information
Technologysoftware Product Evaluation:
Quality Characteristics and Guideline for

236 Rastogi, Orient. J. Comp. Sci. & Technol., Vol. 4(1), 229-236 (2011)

Their Use (1991).
5. Khosravi, K. and Y. Gueheneuc, A Quality

Model for Design Patterns, M. S. Thesis,
Laboratory of Open Distributed Systems and
Software Engineering, Dept. of Informatics
and Operations Research, University of
Montreal (2004).

6. Kazman, R., L. Bass and P. Clements, 2003.
Software Architecture in Practice 2Ed.
Addison Wesley. Klein, M., P. Clements and
R. Kazman (2002).

7. Evaluating Software Architectures: Methods
and Case Studies. Addison Wesley.

8. IEEE, IEEE Standard for a Software Quality
Metrics Methodology, IEEE Std 1061-1992,
IEEE Computer Society. Quality. Elsevier
North-Holland. Describe and Evaluate
Software Architecture. Rev (1993).

9. R. Arnold and S. Bohner. Software Change
Impact Analysis. IEEE Computer Society
Press. ISBN 0-8186-7384-2 (1996).

10. V. R. Basili, R. W. Selby, and D. H. Hutchens.
Experimentation in Software Engineering.
IEEE Transactions on Software Engineering,
12(7): 733-743 (1986).

11. V. Basili, L. Briand, and W. Melo. A Validation
of Object-oriented Design Metrics as Quality
Indicators. IEEE Transactions on Software
Engineering, 22(10): 751-761 (1996).

12. L. Briand, J. Wuest, and H. Lounis. Using
Coupling Measurement for Impact Analysis
in Object-Oriented System. IEEE
International Conference on Software
Maintenance (ICSM), Oxford, UK (1999).

13. R. Dromey. A Model for Software Product
Quality. IEEE Transactions on Software

Engineering 21: 146-62 (1995).
14. R. Dromey. Cornering the Chimera. IEEE

Software 13: 33-43 (1996).
15. N. Fenton and S. Pfleeger. Software Metrics:

A Rigorous and Practical Approach. Int’l
Thomson Computer Press (1996).

16. International Standards Organizations.
Information Technology- Software Product
Evaluation- Quality Characteristics and
Guidelines for their Use, ISO/IEC IS 9126,
Geneva, Switzerland (1991).

17. J. McCall, P. Richards, and G. Walters.
Factors in Software Quality. RADC TR-77-
369 1977. US Rome Air Development Center
Reports NTIS AD/A-049 014,015,055 (1977).

18. IEEE Computer Society. Proceedings Sixth
International Software Metrics Symposium,
Boca Raton, Florida, USA. IEEE Computer
Society Press (1999).

19. S. Morasca and L. C. Briand. Towards a
Theoretical Framework for Measuring
Software Attributes. In Proceedings of the
4th International Software Metr ics
Conference, pp 119-126, Albuquerque, New
Mexico, (1997).

20. R. Offen and R. Jeffery. Establishing Software
Measurement Programs. IEEE Software,
14(2):45-53 (1997).

21. J. Poulin. Measuring Software Reuse-
Principles, Practice, and Economic models.
Addison Wesley (1997).

22. M. Price and S. Demurjian. Analyzing and
Measuring Reusability in Object-Oriented
Designs. In Proceedings of OOPSLA’97,
p22, Atlanta Georgia USA, (1997).

