Fixed Point Theorems for Multivalued Mappings Satisfying Functional Inequality

HEMA YADAV¹, SHOYEB ALI SAYYED² and V.H. BADSHAH

¹Department of Mathematics, Rajiv Gandhi P.G. College, Mandsaur (India). ²Department of Mathematics, Laxminarayan College of Technology, Indore (India). ³School of Studies in Mathematics, Vikram University, Ujjain (India).

(Received: November 10, 2010; Accepted: December 12, 2010)

ABSTRACT

In this paper we have established a fixed point theorem for multivalued mappings and generalized the result of Sayyed, Sayyed and Badshah⁶. AMS 2000 Subject Classifications : Primary 54H25, Secondary 47H10

Key words: Fixed point, Hausdorff Metric, Multivalued mappings, complete metric space.

INTRODUCTION

The fixed poing theory for single valued maps is very rich and well developed, the multivalued case is not. Note that multivalued mappings play a major role in many areas as in studying disjunctive logic programs. Nadler⁵ was first to extend Banach contraction principle to multivalued contraction mapping.

The first theorem regarding to continuity of Fixed points of contraction mapping was presented by Bonsal¹.

Theorem 1

Let (X, d) be complete metric space and let F and Fn (n = 1, 2,...) be contraction mappings of X into itself with the some Lipschitz constant K < 1, and with fixed points u and u_n respectively. Suppose that $\lim_{n \to \infty} F_n X = Fx$ for every $x \in X$. Then

U_n=u.

Subsequently Nadler⁴ obtained, results concerning sequence of contracting mappings.

linTheorem 2

 ${\mathbb R} \to {\infty}$ Let (X, d) be a metric space, let $F_1 : X \to X$ be a mapping with atleast one fixed point xi, for each i = 1, 2, and let $F_o : X \to X$ be a contraction mapping with fixed point x_o . If the sequence F_i converges uniformly to F_o , then sequence $\{x_i\}$ converges to x_o .

Let A be a closed bounded subset of Hilbert space X, d the metric of X and H the Haudorff metric on the closed subset of A generated by d. It is assumed that the family of set valued mappings Fk, (K = 0, 1, 2, ...) satisfy the following conditions.

- 1. $F_{k'}(X)$ is non empty closed convex subset of A for each $x \in A$
- 2. Each F_k is set valued contraction, that is there is a $\lambda \in [0, 1]$ such that H ($F_k(x), F_k(y)$) $\leq \lambda d$ (x,y) for x, y \in A and K = 0, 1, 2, ...
- 3. H ($F_k(x)$, $F_0(x)$) = 0 uniformly for all $x \in A$

Let CB (X) denote the set of non empty closed bounded subset of X. The following is a simple co sequences of the definition of Haudorff metric H. Let A, B, \in CB (X) and a \in A. If n > 0 then there exist $b \in B$ such that $d(a,b) \leq H(A, B) + n$, i.e., $d(a, b,) \leq PH(A, B)$ Where P > 1. It $A, B, \in C$ (X) and $a \in A$, then there exist $b \in B$ such that $d(a,b) \leq H(A, B)$.

The following theorem is were proved by Bose and Mukherjee².

Definition 1

Let H (A, B) = Inf { \in /A \subset N (\in , B) and B \subset N (\in , A)} for A, B, \in CB (X) where N (\in , C) = {x \in X | d (x,c) < \in for some c \in C} where \in > O and C \in CB (X). The function H is a metric on CB (X) and is called Haudorff metric. The metric H depends on the metric d of X and two equivalent metrics on X may not generate equivalent Hausdorff metrics for CB (X) (Kelley) [3])

Definition 2

Let (x_1, d_1) and (y_1, d_2) be two metric spaces. Let $F : (X_1, d_1) \rightarrow CB$ (Y). F is said to be multivalued contraction mapping if and only if

H (fx, fy)
$$\leq$$
 K d1 (x, y) x, y \in X

Where $0 \le K < 1$, is a fixed real number

Definition 3

Let (X, d) be a complete metric space. A mapping F: X \rightarrow X is said to be of generalized another type if

 $\begin{array}{l} [d \ (Fx, \ Fy)]^2 \leq \alpha \ [d(x, \ Fx), \ d(y, \ Fy) + d(x, \ Fy) \ d(y, \ Fx)] \\ + \beta \ [d \ (x, \ Fx) \ d \ (x, \ Fy) + d(y, \ Fy) \ d(y, \ Fx)] \end{array}$

where α , β are non negative numbers such that $0 \le \alpha + \beta < 1$.

Let CB (X) denote the set of non empty closed bounded subset of X.

Theorem 3

Let $\{F_n\}$ be a sequence of self mappings of X having at least one fixed point x_n each and let $\{F_n\}$ converges uniformly to Fo, a mapping of generalized Kannan - Reich type. Let Xo be the unique fixed point of Fo. Then Xn \rightarrow Xo.

Theorem 4

Let $\{F_n\}$ be a sequence of mapping of

generalized Kannan - Riech type and let {F_n} converges pointwise to F, a generalized Kannan - Reich type mapping. Let X_n and X_o be fixed points of F_n and F resp. Then Xn \rightarrow Xo.

The following is a simple consequences of the definition of Hausdorff metric H. Let A, B \in CB (X) and a \in A. if $\eta > 0$, then there exist b \in B, such that d (a, b) \leq H (A, B) + η i.e., d(a, b) \leq PH (A, B) where p > 1. If A, B \in C (X) and a \in A, then there exist b \in B such that d (a,b) \leq H (A,B).

The following theorem were proved by Bose and Mukherjee².

Theorem 5

Let (X, d) be complete bounded metric space and let F: $X \to CL(X)$ be mapping satisfying the following condition.

$$d(\mathbf{F}(\mathbf{x}),\mathbf{F}(\mathbf{y}) \leq \alpha \left[\frac{\left\{d\left(x,F(x)\right)\right\}^{2} + \left\{d\left(y,F(y)\right)\right\}^{2}}{d\left(x,F(x)\right) + d(y,F(y))}\right] + \beta d(x,y)$$

 $\label{eq:andbased} \begin{array}{l} \mbox{where } \alpha \mbox{ and } \beta \mbox{ are non-negative numbers} \\ 0 < 2 \ \alpha + \beta < 1. \mbox{ then F has a fixed point.} \end{array}$

Proof

1.

Let $x_0 \in X$ consider the sequence $\{x_n\}$ where $X_{2n+1} \in F(X_{2n})$

Let us assume d (
$$F(x_0)$$
, $F(x_1)$) = 0
 \Rightarrow then f has fixed point.

II. Now if d (F(x₀), F (x1))
$$\neq$$
 0
Then E as number h > d [F(x₀), F(x₁)]
Such that d(x₁, x₂) \leq h
Let h = p⁻¹ d(F(x₀), F(x₁))
Where P = (a+b)^{1/2}

Then

$$d(\mathbf{x}_{1},\mathbf{x}_{2}) \leq \mathbf{p}^{-1} \left[\alpha \frac{\left[d(x_{0},F(x_{0})) \right]^{2} + \left\{ d(x_{1},F(x_{1})) \right]^{2}}{d(x_{0},F(x_{0})) + d(x_{0},F(x_{1}))} \right] + \beta d(x_{0},x_{0})$$

$$Pd(\mathbf{x}_{1},\mathbf{x}_{2}) \leq \alpha \left[\frac{\left\{ d(x_{0},x_{1}) \right\}^{2} + \left\{ d(x_{1},x_{2}) \right\}^{2}}{d(x_{0},x_{1}) + d(x_{1},x_{2})} \right] + \beta d(x_{0},x_{1})$$

222

$$< \alpha[d(x_{0}, x_{1}) + d(x_{1}, x_{2})] + \beta d(x_{0}, x_{1}) < \alpha[d(x_{0}, x_{1}) + d(x_{1}, x_{2})] + \beta d(x_{0}, x_{1}) Pd(x_{1}, x_{2}) < \alpha(\alpha + \beta)d(x_{0}, x_{1}) + \alpha d(x_{1}, x_{2}) d(x_{1}, x_{2}) < \left(\frac{\alpha + \beta}{p - \alpha}\right)d(x_{0}, x_{1})$$

continuing in similar fashion there exist $\boldsymbol{x}_{_3} \in F(\boldsymbol{x}_{_2})$ such that

$$d(x_2, x_3) < \left(\frac{\alpha + \beta}{p - \alpha}\right)^2 d(x_0, x_1)$$

We have $\alpha > 0$ $\alpha = \left(\frac{\alpha + \beta}{p - \alpha}\right)$

Further,

$$d(x_{2n+1}, x_{2n+2}) < \frac{(\alpha + \beta)^{2n+1}}{(p - \alpha)^{2n+1}} d(x_0, x_1)$$

. .

$$d(x_{2n+1}, x_{2n+2}) < \alpha^{2n+1} d(x_0, x_1)$$

It can be easily seen that the sequence is Cauchy sequence and hence converges to some points $u \in X$ consider.

$$\begin{aligned} d \ (F(u), \ u) &\leq d(F(u), \ x_{n+1}) + d(x_{n+1}, u) \\ &\leq d(F(u), \ F(x_n)) + d(x_{n+1}, u) \end{aligned}$$

$$\leq p^{-1}\left[\frac{\alpha\left\{d\left(u,F(u)\right)\right\}^{2}+\left(x_{n},F(x_{n})\right)}{d\left(u,F(u)\right)+d\left(x_{n},F(x_{n})\right)}\right]+\beta d(u,x_{n})$$

$$\begin{array}{l} \mathsf{Pd}(\mathsf{F}(\mathsf{u}),\,\mathsf{u}) < \alpha \; [\mathsf{d}(\mathsf{u}),\,\mathsf{F}(\mathsf{u})) + \mathsf{d}(\mathsf{x}_{\mathsf{n}},\mathsf{f}(\mathsf{x}_{\mathsf{n}}))] + \beta \; \mathsf{d}(\mathsf{u},\mathsf{x}_{\mathsf{n}}) \\ + \; \mathsf{d}(\mathsf{x}_{\mathsf{n+1}},\,\mathsf{u}) \\ < \alpha \; [\mathsf{d}(\mathsf{u}),\,\mathsf{f}(\mathsf{u})) + \mathsf{d}(\mathsf{x}_{\mathsf{n}},\mathsf{f}(\mathsf{x}_{\mathsf{n+1}}))] + \beta \; \mathsf{d}(\mathsf{u},\mathsf{x}_{\mathsf{n}}) \\ + \; \mathsf{d}(\mathsf{xn}_{\mathsf{+1}},\,\mathsf{u}) \\ \Rightarrow \; (\mathsf{P}{\text{-}}\alpha) \; \mathsf{d}(\mathsf{f}(\mathsf{u}),\mathsf{u}) \leq \alpha \mathsf{d}\; (\mathsf{x}_{\mathsf{n}},\mathsf{x}_{\mathsf{n+1}}) + \beta \; \mathsf{d}\; (\mathsf{u},\,\mathsf{x}_{\mathsf{n}}) + \mathsf{d}\; (\mathsf{x}_{\mathsf{n+1}},\mathsf{u}) \end{array}$$

Taking limit $n \to \infty$ them

$$\begin{array}{l} (\mathsf{P}\text{-}\alpha) \ d \ (\mathsf{F}(u), \, u) = 0 \\ \Rightarrow \mathsf{F} \ (u) = u \\ u \ \text{is a fixed point for F.} \end{array}$$

REFERENCES

- Bonsal, F.F., lectures on some fixed point theorems of functional analysis, Tata Institute of Fundamental Research, Bombay, India (1962).
- Bose, R.K. and Mukherjee, R.N., Stability of Fixed point sets and common Fixed point of families of mappings, *Indian J. Pure and Appl. Math.* 11(9): 1130-1138 (1980).
- 3. Kelly, J.L., General Topology van nostrand Reinhalt, prineton New Jersey (1955).
- Nadler, S.B., Jr Sequences of contraction and Fixed points, *Pac. J. Math*, 27: 579-585 (1968).
- Nadler, S.B., Jr. multivalued contraction mappings pacific *J. Math.* **30**: 475-488 (1965).
- Sayyed S.A., Sayyed F. and Badshah V.H., Fixed Point theorem and multivalued mappings. Acta cienacia Indiaca 28(2): 155-158 (2002).