
INTRODUCTION

The tree is a fundamental structure in
computer science. Almost all operating systems
store files in trees or tree like structures. Trees are
also used in compiler design, text processing, and
searching algorithms. A binary tree is an ordered
tree in which each node has maximum of two
children, referred to as a left and a right tree. A
binary tree is different recursively as either empty
or consists of a root, a left tree, and a right tree.

The left and right trees may themselves
be empty, thus a node with one child could have a
left or a right child. Commonly, there are three
traversing methods:  in order, pre order and post
order traversals.

In preorder traversal, first, process the
current node after this, the left child is processed,
and finally the right child is processed. The output
of a preorder traversal algorithm of the binary search
tree shown in Figure 1is: 50,45,33,48,65,63,75.

This paper describes a non recursive
algorithm for reconstructing the original binary

Oriental Journal of Computer Science & Technology Vol. 4(1), 217-219 (2011)

Reconstruction of a Binary Search Tree from its Preorder
Tree Traversal with the Unique Non-recursive Approach

MANOJ C. LOHANI, UPENDRA S. ASWAL and RAMESH S. RAWAT

Department of Computer Science, Graphic Era University, Dehradun (India).

(Received: March 10, 2011; Accepted: April 18, 2011)

ABSTRACT

This paper presents a new approach of reconstruction of Binary search tree using its Pre
order tree-traversal only. There are many approaches given with the help of combination of two- tree
traversals. But, in this paper we have not used any other combination of tree traversals to reconstruct
the Binary search tree. Our work shows the implementation of this algorithm in C language. Our algorithm
is found to be very simple and faster than other non recursive algorithms due to its unique implementation.
Due to this reason the time and space complexities are significantly reduced.

Key words: Binary Search Tree Reconstruction, Non Recursive Algorithm,
Pre order Traversal, Binary Search Tree, Struct.

search tree from its preorder traversal only and its
implementation in C language.

 

48 

50 

33 

65 

75 

45 

63 

Related reconstruction algorithms
It is well known that given the inorder

traverse of a binary tree, along with one of its
preorder or post order traversals, the original binary
tree can be uniquely identified. It is not difficult to
write a recursive algorithm to reconstruct the binary
tree1. The computation time required is O(n2) where
n is the number of nodes in the tree.

H A Burgdorff5 presented a non recursive
algorithm for reconstructing a binary tree from its
inorder-preorder sequences (in shor t i-p



218 LOHANI et al., Orient. J. Comp. Sci. & Technol.,  Vol. 4(1), 217-219 (2011)

sequences)7 and their algorithm takes O(n2)
computation time. Chen4 has also proposed a non
recursive algorithm from its i-p sequence array of
time completing O(n) and inefficient space. The non-
recursive algorithms for reconstructing the original
binary tree from its inorder and preorder traversal
are done in two stages in the algorithm proposed
by G H Chen4.

Vinu V Das8 has also proposed a non
recursive algorithm for reconstruction of binary tree
with its preorder and in order tree traversal.

Proposed non-recursive reconstruction
algorithm

We have proposed a non-recursive
algorithm to reconstruct the binary search tree using
a single tree traversal i.e., preorder only .Here we
have developed the algorithm for Binary search tree
and we have used only Preorder tree traversal of
Binary search tree.

Here in this algorithm we have Preorder
of the Binary search tree, which we have stored in
an array say, preorder. Since in Preorder, the root
node of the tree will be the first element from
preorder, therefore this first element of an array
preorder will be the root node for the resultant binary
search tree.

Now we will fetch the next element from
preorder, and compare this value with root and if
this fetched element is smaller than the root then it
will be placed in the left hand side of a root otherwise
in the right hand side of a root. This process will
continue for all elements of the array preorder.

The complete algorithm is given below

struct bst //Node structure
      {

int data;

            struct bst *left,*right;

       };

        int       preorder[]={50, 45, 33, 48, 65, 63, 75};
//Preorder of Binary Search Tree

//shown above

       struct bst * RECONSTRUCT_BST(struct bst*,
int); //Function declaration for
//reconstruction of a binary //search tree

     struct bst * RECONSTRUCT_BST (struct bst
*root, int n) //Function definition
       {

 int i=0,data=0;
 struct bst *p,*nd,*x;
 for(i=0;i<n;i++)
//Loop to fetch and

//reconstruct the BST until all //the element are
fetched

  {
     data=preorder[i];

//Fetch the elements

                  nd = (struct bst*) malloc(sizeof(struct
bst)); //Create new node

      nd->data=data;
      nd->left=NULL;
      nd->right=NULL;
      if(root==NULL)
       {

root=nd;
}
else
{

 p=root;
 x=p;

       while(1)
{
x=p;
if(data > (p->data))
 p=p->right;
 else
 p=p->left;
 if(p==NULL && (x-

>data) > data)
  {
    x->left=nd;
    break;

//insert the element on the
//left side of BST

   }
  if(p==NULL && (x-

>data) < data)
   {



219LOHANI et al., Orient. J. Comp. Sci. & Technol.,  Vol. 4(1), 217-219 (2011)

    x->right=nd;
//insert the element on the

                                         break;
// right side of BST
   }

 }
 }

   }
    return root;
 }

The computation time required for
executing the reconstruction algorithm is of O(N)
and the space complexity is O(NlogN).

CONCLUSIONS

In this paper, a non-recursive algorithm for
reconstructing the original binary search tree from
its preorder traversal sequence is proposed. The
new non-recursive algorithm is easy to understand
and is more efficient than the algorithms which were
given in the references4,7-8. While the algorithm in
reference4 has got poor time complexity, the
proposed algorithm reduces the time complexity
significantly though it is meant for binary search
tree only.

   
 T

he
 ti

m
e 

co
m

pl
ex

ity
 

1 2             3          4           5 

   
   

 4
 

 8
   

   
 1

2 
   

  1
6 

 2
0 

 O (n2) 
(Existing method for 
reconstruction of BST) 

 O (n) 
(Proposed method for 
reconstruction of BST) 

The number of elements
Time complexity of existing and proposed algorithms

1. D.E. Kunth, “The Art of Computer
Programming”, Vol. 1: Fundamental
Algorithm, Addison-Wesley, Reading, Mass.,
(1973).

2. D.E. Kunth, “The Art of Computer
Programming”, Vol. 3: Sorting and Searching,
Addison-Wesley, Reading, Mass, (1973).

3. G. D Knott, “A Numbering System for Binary
Trees”, Comm. of ACM, 20(2): 113 (1977).

4. G.H. Chen, M.S. Yu, and L.T. Liu, “Non-
recursive Algorithms for Reconstructing a
Binary Tree from its Traversals”, IEEE
Comm., 88: 490-492 (1988).

5. H.A. Burgdorff, S. Jojodia, F.N. Springsteel,

REFERENCES

and Y. Zalcstein, “Alternative Methods for the
Reconstruction of Tree from their Traversals”,
BIT, 27(2): 134 (1987).

6. J. Driscoll and Y. Lien, “A Selective Traversal
Algorithm for Binary Search Tree”, Comm.
of ACM, 21(6) 445-447 (1978).

7. T. Hikita, “Listing and Counting Subtrees of
Equal size of a Binary Tree”, Inform Process
Lett., 17(4): 225 (1983).

8. Vinu. V. Das  A new Non-Recursive Algorithm
for Reconstructing a Binary Tree from its
Traversals. International Journal of
Algorithms, Computing and Mathematics
2(1): (2009).


