
INTRODUCTION

Mutation testing is a two-step process for
estimating the accuracy of a given software program
with respect to a given functional specification. The
first step is to determine the adequacy of an existing
test suite for its ability to distinguish the given
program from a similar but incorrect program, i.e. a
mutant of the given program. A mutation of a
program is a modification of the program created
by the introduction of a single, small, legal syntactic
change in the software. Some mutations are
equivalent to the given program, i.e given the same
input they will produce the same output, and some
are different. Test suite adequacy is determined by
mutation analysis, a method for measuring how well
a test suite is able to discover that a mutated
program is either equivalent to, or different from,
the original program. A test suite is 100% adequate
if it is able to discover every possible non-equivalent
mutation. Since 100% adequacy is nearly impossible
to achieve, the second step of the mutation testing
process is to make an inadequate test suite more
robust by adding new test cases in a controlled
manner. The test suite enhancement process stops

Oriental Journal of Computer Science & Technology Vol. 4(1), 201-204 (2011)

Design and Analysis of New Software
Conformance Testing: NA Mutation Testing

NAVEEN TYAGI¹ and ASHISH CHATURVEDI²

¹Department of Computer Science, ²Department of Applied Science & Humanities,
Gyan Bharti Institute of Technology, Meerut (India).

(Received: January 11, 2011; Accepted: February 18, 2011)

ABSTRACT

Software conformance testing is the process of evaluating the accuracy of an implementation
built to the requirements of a functional specification. Tedious conformance testing of software is not
practical because variable input values and variable sequencing of inputs results in so many possible
combinations of tests. Mutation testing is a technique for unit testing software that, although powerful,
but computationally expensive. Recent engineering advances have given us techniques and algorithms
for significantly reducing the cost of mutation testing. This paper demonstrates NA (Naveen-Ashish)
Mutation to design a system that will approximate mutation.

Key words: New Software, Conformance testing, Mutation testing.

when mutation analysis shows that the test suite
has reached a desired level of adequacy. The
modified test suite, together with its adequacy
measure, is then used to determine a level of
confidence for the correctness of the original source
program with respect to its functional specification.
Adequacy of a test suite with respect to a given
collection of mutant programs is often defined to
be the ratio of the number of discovered non-
equivalent mutants from that collection divided by
the total number of non-equivalent mutants in the
collection. Since the number of possible mutations
can be very large, often proportional to the square
of the number of lines of code, testing to estimate
this ratio can be a costly and time consuming
process. Mutation testing and mutation analysis
have matured since 1977 and researchers have
found a number of ways to get equivalent results
with smaller and more carefully designed classes
of mutant programs. Recent researchers have
shown that by choosing an appropriate class of
mutations, mutation testing can be equivalent to
data-flow testing or domain testing in its ability to
determine program correctness. Since many of the
steps in mutation analysis can be automated, the

202 TYAGI & CHATURVEDI, Orient. J. Comp. Sci. & Technol., Vol. 4(1), 201-204 (2011)

mutation testing process is now suitable for industrial
use as a white-box methodology for unit testing.
Early researchers in mutation testing include A.T.
Acree, T. Budd, R.A. DeMillo, F.G. Sayward, A.P.
Mathur, A.J. Offutt, and E.H. Spafford. Active
research centers include Yale University, the Georgia
Institute of Technology, Purdue University, and
George Mason University, as well as industrial
software houses. Automated mutation systems
include Pilot1 at Yale University and Mothra [2] at
Purdue University.

Present paper elaborates a new
fundamental mutation, named Naveen-Ashish
Mutation, after the names of authors.

Advantages and Disadvantages of Mutation
Testing:
Advantages

Research has shown that there is a strong
correlation between simple syntax errors and
complex syntax errors in a program, i.e. usually a
complex error will contain some simple error. By
choosing a set of mutant programs that do a good
job of distinguishing simple syntax errors, one has
some degree of confidence (not statistically
measurable) that the set of mutant programs will
also discover most complex syntax errors. By proper
choice of mutant operations, comprehensive testing
can be performed. Research has shown that with
an appropriate choice of mutant programs mutation
testing is as powerful as Path testing or Domain
analysis3. Other research has tried to compare
mutation testing with Data Flow testing4, 5 with
evidence (not proof) that mutation testing is at least
as powerful.

Mutation analysis is more easily
automated that some other forms of testing. Robust
automated testing tools have been developed at
multiple universities and industrial testing groups,
e.g. Yale (Pilot)1, Purdue (Mothra)2, Georgia Institute
of Technology, and George Mason Univ. Mutation
testing lends itself nicely to stochastic analysis.

Disadvantages
Each mutation is equal in size and

complexity to the original program, and a relatively
large number of mutant programs need to be tested
against the candidate test suite. Each mutant may

need to be tested against many of the test cases
before it can be distinguished from the original
program.

Some research has shown thata “good”
set of mutant programs may require a number of
mutants proportional to the square of the number
of lines of code in the original program 6], potentially
a very large number.

The Cost of Mutation Testing
The major computational cost of mutation

testing is incurred when running the mutant
programs against the test cases. Budd¹ analyzed
the number of mutants generated for a program
and found it to be roughly proportional to the product
of the number of data references times the number
of data objects. Recent empirical measurements
have validated this estimate over a number of
programs10. Typically, this is a large number for even
small program units. For example, 44 mutants are
generated for the function Min. Since each mutant
must be executed against at least one, and
potentially many, test cases, mutation testing
requires large amounts of computation. This is
shown in Figure below in the box labeled Run test
cases on each live mutant.

Fig. 1.

here, it should be possible to test the same
procedure in 10 or 15 minutes. There are also
several manual costs associated with traditional
mutation systems.

In Figure 2, the solid steps are performed
automatically, and the dashed steps are performed
manually. The process we develop through this
paper eliminates the two manual steps of inputting
test cases and analyzing equivalent mutants, which
dramatically reduces the human cost of applying
mutation. Unfortunately, we cannot eliminate the

203TYAGI & CHATURVEDI, Orient. J. Comp. Sci. & Technol., Vol. 4(1), 201-204 (2011)

resulting major human cost, determining if the output
of each test case is correct. We do however, as a
result of our test data generation ability, modify the
mutation process so as to reduce the number of
test cases for which the programmer needs to
determine output correctness.

Proposed Naveen-Ashish Mutation scheme
Figure 3 presents a new model of the

Naveen- Ashish (NA) mutation testing process.
Initially, Godzilla will be used to generate a set of
test cases (perhaps a test that is smaller than
ultimately desired) and those test cases will be
executed against the original program, and then the
mutants. The tester will define a \threshold” value,
which is a minimum acceptable mutation score. If
the threshold has not been reached, then test cases
that killed no mutants (termed ineffective), will be
removed. This process will be repeated, each time
generating test cases to only target live mutants,
until the threshold mutation score is reached. Up to
this point, the process has been entirely automatic.
To finish testing, the tester will examine expected
output of the effective test cases, and fix the
program if any faults are found.

In both the traditional and this new
process, the major part of the time and effort of
mutation is in the loop of generating, running, and
disposing of test cases. The significant difference
between the processes is that the loop in the new
process contains no manual steps. All manual steps
are outside the loop, and only need to be done once.
In fact, the only significant manual step is that of
deciding if the outputs of each test case are correct.
There seems to be little hope of automating this
step, although by disposing of ineffective test cases
before checking outputs,we significantly reduce the
workload of the tester.

Fig. 2.

Fig. 3.

REFERENCES

1. T. Budd and F. Sayward. User’s guide to the
Pilot mutation system, TR-114, Dept of
Computer Science, Yale Univ, (1977).

2. R. A. DeMillo, D. S. Guindi, K. N. King, W.M.
McCracken, and A. J. Offutt. An extended

overview of the Mothra software testing
environment. Proceedings of 2nd Workshop
on Software Testing, Verification, and
Analysis, 142-151 (1988).

3. P. G. Frankl and E. J. Weyuker. A formal

204 TYAGI & CHATURVEDI, Orient. J. Comp. Sci. & Technol., Vol. 4(1), 201-204 (2011)

analysis of the fault-detecting ability of testing
methods. IEEE Transactions on Software
Engineering, 19(3): 202-213 (1993).

4. A. P. Mathur and W.E. Wong. An empirical
comparison of data flow and mutation-based
test adequacy criteria. The Journal of
Software Testing, Analysis, and Verification,
4(1): 9-31 (1994).

5. A.J. Offut, J. Pan, K. Tewary, and T. Zhang.
An Experimental Evaluation of Data Flow
and Mutation Testing. George Mason Univ
ISSE technical report (1995).

6. Mehmet Sahinoglu and Eugene Spafford.
Sequential Statistical Procedures for
Approving Test Sets Using Mutation-Based
Software Testing, Purdue Univ, SERC TR-
79-P, (1990).

7. A. J. Offutt, Ammei Lee, Gregg Rothermel,
Roland Untch, and Christian Zapf. An
experimental determination of sufficient
mutation operators. Technical report ISSE-
TR- 94-100. Department of Information and
Software Systems Engineering,George
Mason University, Fairfax VA (1994).

