
INTRODUCTION

Previous History
Size-oriented metrics are derived by

normalizing quality and/or productivity measures by
considering the “Size” of the software that has been
produced. Function-oriented software metrics use
a measure of the functionality delivered by the
application as a normalization value. Network
Metrics for design focus on the structure chart and
define some metrics of how “good” the structure or
network is in an effort to quantify the complexity of
the call graph. Many of the metrics that are
traditionally associated with code can be used
effectively after detailed design. During detailed
design all the metrics covered during the system
design are applicable and useful.

Oriental Journal of Computer Science & Technology Vol. 4(1), 183-187 (2011)

Software Evaluation for
Developing Software Reliability and Metrics

SRI PAMMI SRINIVAS

Department of Computer Science, DNR College, Bhimavaram (India).

(Received: December 05, 2010; Accepted: January 17, 2011)

ABSTRACT

The Dissertation presents a study and Implementation of different software metrics. We find
that there are specific metrics for different stages of the software development cycle. The Metrics in
this dissertation as a literature study is Metrics for Software Requirements, Metrics for Design Level.
The Software Metrics covered in this Dissertation are Object-Oriented Design Metrics, Metrics for
Coding Level, Metrics for Testing Level, Building cost estimation model and Software Reliability Models.
Reliability metric was one of the first early prediction models to be used. The late prediction models
mostly consist of the Software Reliability growth models. Jelinski and Moranda’s model developed one
of the earliest reliability models. Musa Basic Execution Time Model postulated that software reliability
theory should be based on execution time, which is the actual processor time utilized in executing the
program, rather than on calendar time.

Key words: Function-oriented metrics, Size-oriented metrics, Network metrics, Stability,
Cyclomatic Complexity, Cohesion, Coupling, Object-oriented, Coding, Complexity, Style,

Testing, Bugs, Severity, COCOMO, metrics, prediction, halstead, product, process,
project, productivity, technical, faults, fault-proneness.

Present System
The Present study makes a number of

contributions. This study makes 2 main findings.
First, most of the OO design metrics in this study
are statistically related to the fault-proneness of
classes across fault severity. Second, the predictive
abilities of these metrics strongly depend on the
severity faults. The main metric of interest during
testing is the reliability of the software under testing.
Reliability of software depends on the faults in the
software. To assess the reliability of software,
reliability models are needed. To use a model for
given software system, data is needed about the
software that can be used in the model to estimate
the reliability of the software. Software Failures and
bugs are measured by quantity and by relative
severity. Severity is usually determined by a local
set of criteria.

184 SRINIVAS, Orient. J. Comp. Sci. & Technol., Vol. 4(1), 183-187 (2011)

Implementation & Methodology
Object Oriented Design Metrics
Weighted Methods per Class

The number of methods and their
Complexity is a reasonable indicator of the amount
of effort required to implement and test a class.

WMC = Σci

Where for i = 1 to n , If the complexity of
each method is considered 1, WMC gives the total

number of methods in the class.

 Halstead has proposed metrics for length
and volume of a program based on the number of
operators and operands. We define the following
measurable quantities:

N1 =Σ f1.j N2 = Σf2.j

Where N1 is the total occurrences of
different operators in the program and N2 is the total

Table 2.1: Severity Metrics and Ranking Criteria

Severity ranking Ranking criteria

Severity 1 Errors Program ceases meaningful operation
Severity 2 Errors Severe function error but application can continue
Severity 3 Errors Unexpected result or inconsistent operation
Severity 4 Errors Design or suggestion

Table 2.3: Multivariate Analysis

Metric Precision Correctness Completeness ∏∏∏∏∏

Un-graded Severity Faults
Model I 68.28% 60.34% 79.23% 0.865
Model I’ 71.03% 63.79% 76.68% 0.86
High Severity Faults
Model II 84.83% 31.25% 58.82% 0.33
Model II’ 84.83% 31.25% 58.82% 0.317
Low Severity Faults
Model III 70.34% 62.50% 79.42% 0.87
Model III’ 69.66% 61.40% 74.56% 0.859

Table 2.2: Relative Seriousness (Composition) of Bugs Found

Error Ranking Description Bugs Bugs
Ranking Found Reported

Severity 1 Errors GPF or program ceases meaningful operation 18 9
Severity 2 Errors Severe Function error but application can continue 11 11
Severity 3 Errors Unexpected result or inconsistent operation 19 19
Severity 4 Design or suggestion 0 0
Totals 48 39

185SRINIVAS, Orient. J. Comp. Sci. & Technol., Vol. 4(1), 183-187 (2011)

Table 4: Validation Results of the Hypotheses

H-M Faults

Un-graded Severity High Severity Low Severity

H-WMC √ √ √
H-DIT X X X
H-RFC √ √ √
H-NOC X ×
H-CBO √ √ √
H-LCOM √ √ √
H-SLOC √ √ √

occurrences of different operands. The length of
the program is defined as:

N = N1 + N2

From the length and vocabulary, the
volume V of the program is defined as

V= N log2 (n)

Where log2 (n) is the number of bits
needed to represent every element in the program
uniquely, and N is the total occurrences of the
different elements. Volume is used as a size metric
for a program.

Metrics for Testing Level
Severity

Severity is a fundamental measure of a
bug or a failure. Many ranking schemes exist for
defining severity. Because there is no set standard
for establishing bug severity, the magnitude of the
severity of a bug is often open to debate. The
following table shows the definition of the severity
metrics and the ranking criteria used.

Software Failures and bugs are measured
by quantity and by relative severity. Severity is
usually determined by a local set of criteria.

The above figure shows the graphical
representation of the bugs found shown in table 2.2.

Types of metrics used
Very few respondents reported using any

metrics at all. Lines of Code and percent function

coverage were the two most used metrics cited by
survey respondents. Function points, cyclomatic
complexity and Halstead’s metrics were used only
rarely.

Software Reliability Models
MUSA’S Basic Execution Time Model:

In the basic model, it is assumed that each
failure causes the same amount of decrement in
the failure intensity.

λ (µ) = λ
0 [1 - µ/V0]

Where,
λ 0 = Initial failure intensity at the start of execution
V0 = Number of failures experienced, if program is
executed for infinite time period
µ = Average or expected number of failures
experienced at a given point in time

The relationship between failure intensity
(λ) and mean failures experienced (µ)

λ0

Failure
Intensity

 V0 (Total Failures

186 SRINIVAS, Orient. J. Comp. Sci. & Technol., Vol. 4(1), 183-187 (2011)

Fig. 2.1: Bug Distribution of Severity

Fig. 2.: Test Metrics used by respondents

Fig. 2.4(a): High Severity Faults among all the Classes

Fig. 2.4(b): Low Severity Faults among all the Classes

187SRINIVAS, Orient. J. Comp. Sci. & Technol., Vol. 4(1), 183-187 (2011)

Analysis of object-oriented design metrics for
predicting severity faults

This study will test fault severity. Faults
are either high severity or low severity. For each
Metric M, the hypotheses in this study were
Hypotheses Metric (H-M). H-M mean is that a class
with a high M value is more likely to have high/low/
un-graded severity faults than a class with a low M
value. This study makes use of the public domain
data set KC1, which provides both method and
class-level static metrics. All Faults in KC1 were
categorized as of either a high or low severity

The above figures 2.4(a) & 2.4(b) show
the distribution of high severity faults and low
severity faults among the 145 classes. It can be
seen that 11% of all the Classes (i.e., 16 classes)
contain high severity faults and may contain
between one and eight faults.

Multivariate Analysis
In this section, I can describe the

performance of 3 multivariate fault-proneness
prediction models built from design metrics only.
1. For un-graded severity faults
2. For high severity faults
3. For low severity faults.

Hypothesis
Most of the metrics are aimed at getting

empirical laws that relate program size to expected
no. of bugs, expected no. of tests required to find
bugs, resource requirement, release instant,
Reliability & Quality requirement. In this section, I
will use findings to validate hypotheses. I will also
compare the fault-proneness prediction capability
of the metrics for high severity faults and low severity
faults. Apart from the analysis results of the

regression analysis, the precision, correctness, and
completeness values can also help us in the
validation process.

The following table summarizes the
validation results of the hypotheses stated above,
in which λ means that the hypotheses is supported,
X means that the hypotheses is not supported, and
a blank entry means that the hypotheses was not
examined.

Overall, the results mean that the
regression model is more useful to software
managers than the simple model in practice. The
results suggest that the design metrics investigated
perform much better in predicting fault-prone
classes in terms of low severity faults than in
predicting fault-prone classes in terms of high
severity faults.

CONCLUSION

Recommendations for further research
 Previous studies have raised the need to

validate OO design metrics across different faults
severities. My study attempts to fill this gap by
empirically validating OO design metrics for different
fault severities. One limitation of my study is that
the fault severity ratings in KC1 data set are
subjective and may be inaccurate, which possibly
limits the generalizability of my results. The data
used in my study is from a single project. As a
result, the findings in this paper should be viewed
as exploratory and indicative rather than conclusive.
In future work, we will replicate this study across
projects. There is a need to validate my findings in
other OO Programming languages such as Java.

BOOKS
1. Pankaj Jalote “An Integrated Approach to

Software Engineering”, Second Edition,
Narosa Publishing House.

2. Roger S. Pressman “Software Engineering:
A Practitioner’s approach”, Vth Edition,
McGraw Hill Publishing House.

3. Marnie L. Hutcheson “Software Testing

REFERENCES

Fundamentals, Methods and Metrics”, Wiley
Dreamtech India Pvt. Ltd., 2003.

4. R.Subramanyam and M.S.Krisnan,
“Empirical Analysis of CK Metrics for Object-
Oriented Design Complexity: Implications for
Software Defects”, IEEE Trans. Software
Eng., 29(4): (2003).

