
INTRODUCTION

Heterogeneous system network
interconnect a multitude of diverse machines to
perform computationally intensive applications that
have diverse computational requirements.
Heterogeneous system comprises of hardware and
operating system software from variety of vendors.
Zina Ben Miled et al, 1998 established that
heterogeneous machine can have higher cost-
efficiency than the optimal homogeneous machine.
The performance of this kind of system is very
conditioned by the strong dependence that exists

Oriental Journal of Computer Science & Technology Vol. 4(1), 99-105 (2011)

Framework for Threshold based Centralized Load
Balancing Policy for Heterogeneous Systems

ARCHANA B. SAXENA and DEEPTI SHARMA

Department of Computer Science, Jagan Institute of Management Studies,
Affiliated to GGSIPU, Delhi (India).

(Received: January 12, 2011; Accepted: February 18, 2011)

ABSTRACT

We propose threshold based centralized load balancing policy for heterogeneous systems,
where all incoming jobs are acknowledged by central server and completed with the help of workstations.
All the activities (Load distribution & Load sharing) within system are regulated with the help of a
central server by maintaining Capability matrix and Load matrix. We present details how threshold
based Load balancing is implemented in anticipated system. A node is assigned a relative load threshold
on the basis of their operational capability. Overloaded (Load > Threshold) and under loaded (Load <
threshold) nodes can route load balancing through central server. We intend to do a simulation study to
compare the propose scheme with conventional Load balancing scheme to show that projected scheme
will increase system throughput and condense execution time. The computer simulation is based on
time, sender and receiver initiative load balancing scheme, and is tested for a number of decision
thresholds. We hope our result will match our expectation.

Key words: Heterogeneous Systems, Central Server, Threshold, Load Balancing,
Load Distribution, Centralized Load Balancing, Sender Initiative, Receiver Initiative.

Abbreviations: S: System, CS: Central Server, LB: Load Balancing, CM: Capability Matrix,
LM: Load Matrix, Ji: Job, n: Node, Ji.Mi: Memory Requirements of Job, Ji.Si: Processing

Speed Requirements of Job, Ni.Mi: Memory availability of with Node,
Ni.Si: Processing Speed capabilities of Node.

between their architecture and job allocation.
System performance can be improved significantly
if machine heterogeneity is taken into account by
load distribution policy. In heterogeneous system,
where different machines with different competency
are available, scrutiny of all the nodes for best
capable node that can share workload with currently
overloaded node would involve substantial time
delay and communication cost. An effective
workload distribution and Load Balanced state is
required in order to reduce the total execution time
and increase system throughput.

100 SAXENA & SHARMA, Orient. J. Comp. Sci. & Technol., Vol. 4(1), 99-105 (2011)

In the direction to address above
discussed issues, we have devised a centralized
adaptive load balancing scheme, where Load
distribution is a job scheduling policy regulated by
Central server, which takes a job as a whole and
assigns it to single node for execution on the basis
of processing requirements of job by consulting
capability matrix.

Apart from being the allocator, the next
important role of CS is to act as load balancer in
the system. In the above discussed system, Load
Balancing is a threshold based policy where load
threshold (an integer value) is associated with every
machine on the basis of their operational
capabilities. Whenever workload of a node exceeds
stipulated threshold (Load > Threshold), then it
comes in overloaded status and all the nodes where
workload is lesser (Load < Threshold) then comes
in under load category. Load balancing request can
be initiated by Overloaded (Sender Initiative) or
under loaded (Receiver Initiative) and routed
through Central server.

This paper is organized as follows: Related
work is reviewed in section II. The architecture of
our policy is presented in section III. Traffic Model
or Load distribution mechanism is described in
section IV. Section V explains about Load Balancing
strategies. . Future work and Conclusion are listed
in section VI. Section VII details references that
are related to this research work.

Related work
Sandeep Sharma, Sarabjit Singh, and

Meenakshi Sharma [2008] have studied various
Static(Round Robin and Randomized Algorithms,
Central Manager Algorithm, Threshold Algorithm)
and Dynamic (Central Queue Algorithm, Local
Queue Algorithm) Load Balancing Algorithms in
distributed system. The performance of these
algorithms are measured by following parameters:
Overload Rejection, Fault Tolerant, Forecasting
Accuracy,, Stability,, Centralized or Decentralized,,
Nature of Load Balancing Algorithms,, Cooperative,
Process Migration,, Resource Utilization. Their
results shows that static Load balancing algorithms
are more stable with such parameters

Neeraj Nehra, R.B. Patel, V.K. Bhat [2007]

have proposed a DDLB(Dynamic Distributed Load
Balancing) scheme for minimizing the average
completion time of application running in parallel
and improve the utilization of nodes. In proposed
scheme instead of migrating the process for load
balancing between clusters, they split the entire
process into job and then balance the load. In order
to achieve their target they will make use of MA
(Mobile agent) to distribute load among nodes in a
cluster.

Johan PARENT, Katja Verbeeck and Jan
LEMEIRE [Brussels, Belgium][2002] have done
experiment on heterogeneous cluster of PCs to
execute parallel application with master-slave
software architecture and show that using
reinforcement learning it is possible to reduce the
strain on the communication hardware. This can be
achieved by individually adapting the amount of data
(block size) requested by each slave.

Helen D. Karatza and Ralph C. Hilzer
[2002] have worked together to find a load sharing
policy in heterogeneous distributed environment
where half of the total processor have double of
the speed of others and excepts only two types of
jobs: first class and Generic. They have studied
only non-preemptive job scheduling policies where
scheduler have exact information about queue
length of all processor and queuing time of
dedicated jobs in fast processor.

Kalim Qureshi* and Masahiko Hatanaka
[2000] presented a short survey on HDC systems
and identified load balancing problems in parallel
raytracing in such systems. They have studied the
performance of the RTS (Runtime Task scheduling)
strategy for raytracing application on HDC systems
and made suggestions to improve it.

Anna Hal aud Theodore J. Johnson [1986]
has addressed a Load balancing problem in LOCUS
distributed file system and proposed a CSS
(centralized synchronization sites) policy for optimal
process and read site placement. This algorithm
considers 8 different job types (distinguish on the
basis of CPU, disk and network requirements) and
three classes of work load for the site.

Mohammed Javeed Zaki, Wei Li, and

101SAXENA & SHARMA, Orient. J. Comp. Sci. & Technol., Vol. 4(1), 99-105 (2011)

Srinivasan Parthasarathy [1997] have worked on
the concept of Dynamic Customized Load Balancing
for heterogeneous network. Their experiment result
shows that different load balancing schemes(Local,
global, centralized and distributed) are best for
different application under varying processor,
program and system parameter and therefore
application-driven customized dynamic load
balancing becomes essential for good performance.

Andrew J. Page and Thomas J. Naughton
have proposed a genetic algorithm (GA) to
dynamically schedule heterogeneous task on
heterogeneous system in a distributed environment
to minimize total execution time. GA uses historical
information to exploit the best solution and
completes it process in three steps: Selection,
Crossover and Random mutations. The GA
algorithm is only performed if there are more
unscheduled tasks than processors;

Kun-Ming V. Yu*, Chih-Hsun Chou* and
Yao-Tien Wang have designed and implemented a
Load balancing system based on fuzzy logic and
proved that, this algorithm not only effectively
reduces the amount of communication messages
but also provides considerable improvement in
overall performance such as short response times,
high throughputs, and short turnaround times.

Zhiling Lan, Valerie E. Taylor and Greg
Bryan have proposed a Load Balancing scheme
for (SAMR) Structured Adaptive Mesh Refinement
Application on distributed systems. In proposed
scheme they consider the heterogeneity of
processor and dynamic load on system and divide
the complete Load balancing process into two
phases Global Load Balancing and Local Load
Balancing and.

Architectural description
System Layout

Load Matrix

CS

M1

M3

M7

M9
M10

M5

M2

M4

M8

Mn

M6

Cap. Matrix

Fig. 1: Network model of system S, where
heterogeneous machines are regulated by Central Server

In this study, we assume a wired LAN of
heterogeneous machines similar to the one depicted
in Fig I. In the above portray system consist of S-
11 heterogeneous processors each serving its own
queue (A job as a whole). A high speed network
connects nodes with regulating authority CS. For a
regulating authority, it is essential to know who all
are par t of this network and what are their
processing capabilities. So, when ever any node

wants to associate with the network, it has to register
itself with CS. Any machine is eligible to get any
work load if it is registered with the CS. At the time
of registration, node sends memory and processing
capacity to the CS through highest quality signal
then CS saves configuration of nodes in capability
matrix for future use. In this paper, this procedure
is assumed to be completed with the help of
database attached with central server. First two

102 SAXENA & SHARMA, Orient. J. Comp. Sci. & Technol., Vol. 4(1), 99-105 (2011)

columns of Capability matrix represents identity and
IP address of the machine and Last two columns

shows Memory and processing capabilities of
Node.

 End

 Start

CS update Capability Matrix Cap. Matrix

 Node Ni Register with CS

Fig. 2: Flow chart of new node registration with CS and updating of capability Matrix

Table 1: [Capability Matrix]: Machine Identity, IP address, Memory and Processing
Capabilities of Machine that CS maintains for Load Distribution among Nodes

Mac Id IP Address RAM (N.Mi)Node.Memory CPU (N.Si)Node.Speed

MAC-I 172.16.0.2 2048 MB 2.2GHZ
MAC-II 172.16.0.3 3072 MB 2.0GHZ
MAC-N 172.16.0.28 512 MB 2.6GHZ

Central Server

R1

R2

R3

R4 Capability Matrix

M1

M2

M3

M4

Fig 3: All incoming requests are distributed among registered
node by consulting Capability matrix maintained by Central Server

Traffic model/ load distribution
Incoming traffic at the network is

acknowledged by the CS (Central Server) and
partitioned among all the registered nodes based
on the processing capabilities of requested job. The
job execution is highly independent. Each node has
to process the job as a whole on its own. Each job

ji requires memory requirements Mi and processing
speed Si. Mi and Si is an integer value representing
memory and processing speed that is required to
process that job. A node N is eligible to process this
job if N.Mi > Ji.Mi and N.Si > Ji.Si. CS selects host
for new process/job by reviewing node’s capabilities
through CM.

103SAXENA & SHARMA, Orient. J. Comp. Sci. & Technol., Vol. 4(1), 99-105 (2011)

After receiving a Job for execution, ‘CS’ carries
out the following Load distribution procedure.
It consists of four steps
A. Acknowledgement of Job receipt by CS.
B. ‘CS’ searches capability matrix for suitable

node. For this study, we assume capability
matrix consist of ‘N’ nodes. CS starts from

Yes

No

 Start

 Job ji Assigned to server S

S searches capability matrix for suitable Node n

Avl. Of
Node n

Assign job ji to Node n with data, Information and
required communication link

 Node n processing job ji

 End

Cap. Matrix

Load Matrix

Fig. 4: Flow Chart for Job Assignment

first node in the capability matrix. If Ni.Mi >
Ji.Mi then go to C other wisr move to step
B and compare next Node in the matrix.

C. If Ni.Si > Ji.Si then go to D otherwise move
to B and compare Next Node in the matrix.

D. Job is assigned to Node Ni and all the details
are recorded in the Load Matrix.

Table 2: [Load Matrix]: Process Id of Job, Machine Identity, Machine capabilities and Job Status
update in Load Matrix by Central server at the time of Load Distribution and Load Balancing

Process ID Mac ID Mac IP RAM CPU Job Status

P001 Mac I 172.16.0.28 1800 MB 1GHz Executing
Poo2 Mac-II 172.16.0.29 2200 MB 2Ghz Executing

Load balancing strategy
In projected system, we apply threshold

based dynamic load balancing scheme where CS
balance load among under loaded or overloaded
node on the basis of request generated and by
monitoring their current position. CS keeps a private
copy of node’s load status. Load Matrix is one of
the key elements in load balancing activity. (Load

matrix maintained in database attached with CS).
The Load of a node can be characterized by one of
three levels:
´ Load balanced: Load = Threshold
´ Over Loaded : Load > Threshold
´ Under Loaded : Load < Threshold

104 SAXENA & SHARMA, Orient. J. Comp. Sci. & Technol., Vol. 4(1), 99-105 (2011)

The policy in present system can be
initiated by Overloaded (Sender Initiative) or Under
loaded (Receiver Initiative) node. In both the cases,
request is routed through CS.

Sender Initiative Load Balancing
(Overloaded Node: Load > Threshold): when a
Node ni would like to share its workload, it sends a
request through communication link to CS for load
sharing. In order, to respond the requested node n,
CS proceeds with following actions:
1. To confirm job status of ni, CS checks LM

and procedure stops/ request rejected if ni
is not overloaded, otherwise move to step 2.

2. CS checks LM for non executing processes/
jobs pending with ni. (In present system only
non-executing jobs are considered for
migration). If there is no such job then
procedure ends otherwise move to step 3.

3. After selecting the job for migration, CS looks
for (Through CM) node that can process
selected job. Move to step 4 if one of them is
found to have enough processing capabilities
to execute selected job.

4. The last step involved job migration from
Overloaded (ni) to newly selected node and
updating LM.

Receiver Initiative Load Balancing (Under

loaded Node: Load < Threshold): when an under
loaded Node ni would like to share its workload, it
sends a request through communication link to CS
for load sharing. In order to respond the requested
node n, CS proceeds with following actions:
1. To confirm job status of ni, CS checks LM

and procedure stops/ request rejected if ni
is not overloaded, otherwise move to step 2.

2. CS checks the processing capabilities of
required node ni, in order to decide what sort/
type of job can be assign to his node ni.

3. CS checks LM for non executing processes/
jobs pending with any node where job
requirements matches with processing
capabilities of node ni. (In present system
only non-executing jobs are considered for
migration). If there is no such job then
procedure ends otherwise move to step 4.

4. The last step involved job migration from
Overloaded(ni) to newly selected node and
updating LM.

Experimental evaluation/ performance
evaluation

Traditional load balancing scheme is
compared with proposed load balancing scheme.
Through simulation we will try to prove that our load
balancing scheme improves work through put.

1 Sandeep Sharma, Sarabjit Singh, and
Meenakshi Sharma, (April, 2008),
“Performance Analysis of Load Balancing
Algorithms”

2. Branco Kalinka R. L. J. Castelo, Santana
Marcos José , Santana Regina H. C. ,
Bruschi Sarita Mazzini, Kawabata Célia Leiko
Ogawa, Ordonez Edward David Moreno, PIV
and WPIV: Two New Performance Indices for
Heterogeneous Systems Evaluation (2007).

3. Neeraj Nehra, R.B. Patel, and V.K. Bhat “A
Framework for Distributed Dynamic Load
Balancing in Heterogeneous Cluster” (2007).

4. Lan Zhiling, Taylor Valerie E., “Dynamic Load
Balancing of SAMR Applications on
Distributed Systems”, (2007).

 5. Othman Ossama, and Schmidt Douglas C.,

REFERENCES

“Optimizing Distributed System Performance
via Adaptive Middleware Load Balancing”,
(2007).

6. Godfrey Brighten, Lakshminarayanan
Karthik, Surana Sonesh, Richard Karp,
Stoica Ion (2004), “Load Balancing in
Dynamic Structured P2P Systems.”

7. Helen D. Karatza and Ralph C. Hilzer, “Load
sharing in heterogeneous distributed
systems” (2002).

8. Karatza Helen D. , Hilzer Ralph C., Load
sharing in heterogeneous distributed
systems (2002).

9. Johan PARENT, Katja Verbeeck and Jan
LEMEIRE, “Adaptive Load Balancing of
Parallel Applications with Reinforcement
Learning on Heterogeneous Networks”

105SAXENA & SHARMA, Orient. J. Comp. Sci. & Technol., Vol. 4(1), 99-105 (2011)

(2002).
10. Othman Ossama, O’Ryan Carlos, and

Schmidt Douglas C, “An Efficient Adaptive
Load Balancing Service for CORBA” (2001).

11. Shahzad Malik, “Dynamic Load Balancing in
a Network of Workstations” (2000).

12. Kalim Qureshi and Masahiko Hatanaka,” An
introduction to load balancing for parallel
raytracing on HDC systems” (2000).

13. Maheswaran, M., S. Ali, H. J. Siegel, D.
Hensgen, and R. F. Freund., “Dynamic
matching and scheduling of a class of
independent tasks onto heterogeneous
computing Systems.” (1999).

14. Mohammed Javeed Zaki, Wei Li, and
Srinivasan Parthasarathy2, “Customized
Dynamic Load Balancing for a Network of
Workstations1” (1997).

15. Li Jie and Kameda Hisao “Load Balancing
Problems for Multiclass Jobs in Distributed/
Parallel Computer Systems (1998).

16. Mirchandaney, R., D. Towsley, and J.
Stankovic. Adaptive load sharing in
heterogeneous systems (1990).

17. Shenker, S., and A. Weinrib. “The optimal
control heterogeneous queuing systems: a
paradigm for load sharing and routing.”

(1989).
18. Tanenbaum Andrew S. And Renesse

Robbert Van, “Distr ibuted Operating
System”, Computing Surveys, 17(4): (1985).

19. Cow, Y.-C., and H. W. Kohler., Models for
dynamic load balancing in a heterogeneous
multiple processor system. IEEE
Transactions on Computers 28(5): 354-361
1979.

20. Kun-Ming V. Yu, and Chih-Hsun Chou “A
Fuzzy-Based Dynamic Load-Balancing
Algorithm”

21. Andrew J. Page and Thomas J. Naughton,
“Framework for task scheduling in
heterogeneous distributed computing using
genetic algorithms”

22. Zhiling Lan, Valerie E. Taylor and Greg Bryan,
“Dynamic Load Balancing of SAMR
Applications on Distributed Systems”

23. Anna HaL aud Theodore J. Johnson, “A
Study of Dynamic Load Balancing in a
Distributed System”

24. Zina Ben Miled , Zina Ben , José A.B.
Fortes, Rudolf Eigenmann , Valerie Taylor
“On the Cost-efficiency of Hierarchical
Heterogeneous Machines for Compiler- and
Hand-Parallelized Applications”, (1998).

