
INTRODUCTION

Knowledge Discovery in Databases (KDD)
is the process of searching large volumes of data
for the non trivial extraction of implicit, novel, and
potentially useful information. Traditional KDD
applications require complete access to the data
which is going to be analyzed. Nowadays, a huge
amount of heterogeneous, complex data resides
on different computers which are connected to each
other via local or wide area networks (LANs or
WANs). Examples comprise of distributed mobile
networks, sensor networks or supermarket chains.
The increasing demand to scale up algorithms to
these massive data sets which are inherently
distributed over networks with limited bandwidth
and computational resources has led to methods
for parallel and distributed data mining. One of the
most common approaches for business applications
to perform data mining on such massive datasets

Oriental Journal of Computer Science & Technology Vol. 4(1), 29-39 (2011)

CIODD : Cluster Identification and
Outlier Detection in Distributed Data

EENA GILHOTRA¹ and SAROJ HIRANWAL²

¹Department of Computer Science, Sri Ganganagar Engineering College,
Sri Ganganagar (India).

²Head-IT SBCET –Jaipur (India).

(Received: April 10, 2011; Accepted: May 29, 2011)

ABSTRACT

Clustering has become an increasingly important task in modern application domains such as
marketing and purchasing assistance, multimedia, molecular biology etc. The goal of clustering is to
decompose or partition a data set into groups such that both the intra-group similarity and the inter-
group dissimilarity are maximized. In many applications, the size of the data that needs to be clustered
is much more than what can be processed at a single site. Further, the data to be clustered could be
inherently distributed. The increasing demand to scale up to these massive data sets which are inherently
distributed over networks with limited bandwidth and computational resources has led to methods for
parallel and distributed data clustering. In this thesis, we present CIODD, a cohesive framework for
cluster identification and outlier detection for distributed data. The core idea is to generate independent
local models and combine the local models at a central server to obtain global clusters. A feedback
loop is then provided from the central site to the local sites to complete and refine the global clusters
obtained. Our experimental results show the efficiency and accuracy of the CIODD approach.

Key words: Cluster, Data mining, Data warehousing.

is to centralize distributed data in a data
warehouse on which the data mining techniques
are applied. Data warehousing is a widely used
technology which integrates data from multiple data
sources into a single repository in order to efficiently
execute complex analysis queries. However, despite
its commercial success, this approach may be
impractical or even impossible for certain business
settings, for instance:
´ When a huge amount of data is frequently

produced at different sites and the cost of
its centralization cannot scale in terms of
communication, storage and computation.
For example, call data records of telephonic
conversations.

´ Whenever data owners cannot or do not want
to release information. This could be in order
to maintain privacy or because disclosing
such information may result in a competitive
disadvantage or a considerable loss in

30 Gilhotra & Hiranwal, Orient. J. Comp. Sci. & Technol., Vol. 4(1), 29-39 (2011)

commercial value. For example, data mining
across banks by the Reserve Bank of India.

Such scenarios call for distributed data
mining. Distributed data mining deals with pattern
extraction problem. One of the most studied data
mining techniques is clustering. The goal of this
technique is to decompose or partition a data set
into groups such that both intra-group similarity and
inter-group dissimilarity are maximized. In particular,
clustering is fundamental in knowledge acquisition.
It is applied in various fields including data mining,
statistical data analysis, compression and vector
quantization.

In this thesis, we present CIODD, a
cohesive framework for cluster identification and
outlier detection for distributed data. The data is
either distributed originally because of its production
at different locations or is distributed in order to gain
a computational speed up. We use a parameter
free clustering algorithm to cluster the data at local
sites. These clusters are actually the partial results
which are communicated in the form of local models
to the central server. The central server aggregates
these partial results to give a global solution. A
feedback loop is then provided to purify and
enhance this global solution.

Below we give a brief statement of the problem
addressed in the thesis

Given a dataset D of n points distributed
across s sites and a central server, find the clusters
of the dataset D by communicating minimum
information to the central server such that the
accuracy of the obtained clusters is comparable to
the results obtained using a centralized clustering
approach...

Related Work
Clustering

Clustering partitions a dataset into highly
dissimilar groups of similar points. The definition of
clusters and outliers depends very much on the
domain of the dataset. For the sake of clarity, we
provide here general definitions quoted in the
literature. A cluster is a set of similar points that are
highly dissimilar with other points in the dataset.
An outlier or a noise point is an observation which
appears to be inconsistent with the remainder of

the data. Next, we discuss the various clustering
algorithms brieûy.

Partitioning techniques
K-means, PAM, CLARA and CLARANS

are good examples for clustering based on
partitioning techniques. K-means is in fact a very
popular clustering algorithm. These clustering
algorithms work under the assumption that there is
no noise in the dataset, the clusters are spherical-
shaped and the points in the cluster follow uniform
distribution. They perform well on datasets
containing spherical clusters but also do include
noise in the cluster results. They cannot identify
clusters of irregular shapes and sizes. CURE is
another partitioning based clustering technique
developed to reduce the effect of noise and identify
elliptical shaped clusters. It uses multiple
representative points for each cluster to reduce the
effect of noise but cannot capture clusters of
different densities.

Hierarchical techniques
Clustering algorithms using this technique

aim at producing a tree/dendrogram where each
node contains a set of data points (a probable
cluster). There are two basic approaches for
generating a hierarchical clustering:
• Agglomerative
• Divisive

On the basis of the proximity definition for
two clusters, hierarchical clustering algorithms are
also classified as
• Single link or MIN
• Complete link or MAX or CLIQUE
• Average

The single link hierarchical algorithm is
more suited to identify clusters of irregular shapes.
This technique is computationally intensive,
sensitive to the presence of noise points scattered
between the clusters and fails in the case of clusters
with varying densities. Other variations of this
technique are the average link and complete link
hierarchical algorithms, which are less sensitive
to noise but tend to identify clusters of spherical
shape. BIRCH is another clustering technique that
uses a hierarchical data structure called CF-tree
for partitioning the data points in an incremental

31Gilhotra & Hiranwal, Orient. J. Comp. Sci. & Technol., Vol. 4(1), 29-39 (2011)

way. CF-tree is a height balanced tree, which stores
the clustering features. The algorithm requires two
parameters as input: branching factor and cluster
diameter threshold. The algorithm is sensitive to
the order in which the data points are scanned.

Density-based techniques
Examples of this technique are DBSCAN

and OPTICS. They consider the density around
each point to identify the cluster boundaries and
the core cluster points. The close cluster points
in a single neighborhood are then merged.
OPTICS does not generate a clustering solution;
instead it generates an augmented ordering of
the points. Given a reachability distance, it
generates reachability plots that capture the local
density settings around each point. It can be
effective for noisy datasets having arbitrary
shaped clusters of different sizes and densities.
The clustering results for both these algorithms
depend largely on the provided parameters.
Finding these parameters for both these algorithms
is a challenge for the user.

Graph based approaches
The clustering algorithms based on these

approaches are able to keep the structure of data
intact. They are able to remember the positions of
a point with respect to the other points and thus
can help in finding the clusters of arbitrary shapes
and sizes very well.

CIODD: A framework for distributed clustering
The proposed framework CIODD uses

object distributed data and is a centralized
ensemble based method. CIODD is a cohesive
framework for cluster identification and outlier
detection for object distributed data. From now
onwards by distributed data, we refer to object
distributed/homogeneous data. The core idea of
the framework is to generate independent local
models and combine the local models at a central
server to obtain global clusters. A feedback loop
is then provided from the central site to the local
sites to complete and refine the obtained global
clusters. We illustrate the CIODD framework in
Figure 3.1. The steps involved in the process of
distributed clustering for the CIODD framework
are:

DD: Data Distribution
As stated earlier, the need for distributed

clustering might occur not only when the data is
inherently distributed but also when the data cannot
be processed using a single processor and thus to
gain a computational speed up, it is distributed
across multiple processors. The step DD in this
process involves the distribution of data across the
local sites.

There could be different data partitioning
strategies which could be employed for distributed
data mining. The one we use is cover based
partitioning, i.e. In our approach the partitions are
overlapping. Here two partitions D i and D j are
over- lapping if | Di ∩ D

j | >0.

Local Clustering Algorithm
The clustering algorithm that we use for

clustering the data at local sites is the Stability based
RECORD Algorithm (SRA) with minor modifications.
.

The SRA algorithm uses the notion of k-
Reverse Nearest Neighbor (kRNN) and Strongly
Connected Components (SCC) to:
• Derive clearly distinguishable clusters, and
• To identify and remove outliers during the
process of clustering.

SRA presents a cohesive framework for
both cluster analysis and outlier detection that
improves the quality of the clustering solutions.
Definitions
kRNN (p j): The set of points which consider pj as
one of their kth nearest neighbors.
kRNN (p j) =∪i=1

p rnn i (p j)
Strongly Connected Components (SCC): The
SCC of a digraph partitions the vertices’s into
subsets such that all the points of each subset
are mutually reachable.

Core point
In a cluster, a core point is a point that lies

amidst the dense set of points of the cluster. The
concept of kRNN is used to capture the nature of
this neighborhood of the point. For a given value of
k, a point having |kRNN|≥ k is flagged as a core
point.

32 Gilhotra & Hiranwal, Orient. J. Comp. Sci. & Technol., Vol. 4(1), 29-39 (2011)

Boundary point and Outlier
A boundary point in a cluster is a point

which lies in the transition region of dense
points to noise points in the cluster. An outlier is
a point far from most others in a set of data. Based
on large number of experiments done over various
datasets, it was found in [11] that an outlier has |
kRNNs | < k and most of its kRNNs are outliers.
Also for a boundary point, its | kRNNs|< k and most
of its kRNNs are core points.

Basic RECORD Algorithm
Stability based RECORD algorithm (SRA)

is a hierarchical clustering algorithm which uses the
basic RECORD algorithm presented in11. Therefore
we first describe the basic RECORD algorithm and
then move on to the SRA in the later parts of the
section. The major steps involved in the basic
RECORD algorithm are as follows:

Step 1-kRNN Computation
Generate the distance matrix based on

the distance function d(i, j). Here distance function
is a measure to define the distance between two
data points. Calculate the kRNN sets of each point
as follows:
• For each point p, identify the k-nearest

points knn(p). For every point q∈ kNN(p),
increase the count of its reverse nearest
neighbors by 1.

• Add the directed edge (q∈ kNN (p), p) to the
kRNN graph.

Step 2-Outlier detection
For each data point, the numbers of points

in kRNN (p) are checked. For any data point p if |
kRNN|< k, it is ûagged as an outlier. The point p
and all out-going edges from p are removed
from the kRNNG graph. After removing all outlier
points from the graph, the modified graph is
represented as kRNNG > k . Also we have the
graph kRNNG < k which is given by kRNNG -
kRNNG > k. This kRNNG > k includes only outlier
points and their corresponding out-going edges and
is used at later stages to get a stable clustering
solution.

Step 3-Cluster Identification
Eliminating outliers from kRNNG results

in kRNNG > k. The clusters are now computed

based on this kRNNG > k. Each SCC in the kRNNG
> k graph becomes a cluster as it follows two rules:
• Each member of the SCC is accepted as k-

nearest by at least k points and
• Every possible pair of members in the SCC

is mutually reachable depicting the
cohesiveness of the graph.

SCCs are also computed on kRNNG <
k(sub-graph kRNNG containing only outliers).
The SCCs obtained from this graph are clusters of
noise points and are very sparse. The SCCs so
obtained are used to identify stable clustering
solution (Stability based RECORD). An efficient
approach to compute these SCCs incrementally is
provided in 11.

Step 4-Local outlier incorporation
Since even the boundary points could have

their | kRNN |< k, the outlier detection technique
discussed above could be very stringent. Because
of this, some of the boundary points of the clusters
are also identified as outliers. Due to this, the
clusters generated are highly dense and incomplete.
To avoid such eliminations, after the generation of
SCCs, an effort is made to draw each of the outlier
points to its nearest cluster. Nearest cluster is the
closest majority cluster among kRNN points of the
outlier under study. At the end of this step, an outlier
point such that majority of its neighbors lie in one
cluster, gets ûagged as a cluster point of that cluster.

Stability based RECORD algorithm
Having discussed the basic RECORD

algorithm, we now give a brief explanation of the
Stability-based RECORD Algorithm (SRA)
algorithm. The SRA utilizes the basic RECORD
algorithm, and generates the most stable clustering
result as its output. Starting from k = 1, for each
value of k the kRNNG is computed. The kRNNG is
split into two subgraphs kRNNG < k and kRNNG
> k . SCCs are computed for both the subgraphs.
As k increases, the number of SCCs in kRNNG < k
and kRNNG > k are checked. After a certain value
of k these numbers do not change. This would
imply that no new clusters are formed and no
variation in noise behavior is detected. So in [11],
the number of SCCs in both the subgraphs is
observed for some l consecutive values of k and if
they remain constant then the clusters obtained are

33Gilhotra & Hiranwal, Orient. J. Comp. Sci. & Technol., Vol. 4(1), 29-39 (2011)

considered to be stable. The value of l is determined
experimentally. For the distributed scenario, the
stability constraint has to be less stringent because
at any given site only a subset of data is clustered.
Because of this, the stability of the clustering
algorithm is expected to go down.

For our experiments, we chose l to be 1
and terminate the local clustering algorithm when
the number of SCCs remains constant for both the
subgraphs for at least two successive values of k.

The first step of the SRA requires the
computation of the complete distance matrix to
compute the kNN of a data point. This becomes a
bottleneck in the performance of the SRA algorithm.
In the next subsection, we present an efficient
approach to compute these k nearest neighbors of
a data point.

Efficient Computation of kNN
For computing the kNN of a point one

needs to compute the distance/similarity matrix. A
similarity matrix is a n* n matrix of distance
measures which expresses the similarity between
any two data points. The O(n2) complexity becomes
a bottleneck in the performance of the SRA
algorithm. The experiments carried out in [11] show
that stable clustering solution is found by exploring
within 100 neighbors of every data point. Hence we
propose an efficient method to compute the kNN
of every data point where k has some known value
which is much less than n. The basic idea here is
to convert the kNN search of a data point from the
entire search space to a search in some
neighborhood of the point using the property
explained in Theorem 1.

Consider a data point A and its kNN points
ordered on distance: N1, N2, . . . , Nk. Let Nk be the
kth nearest neighbor of A and d (A, Nk) = x, where d
(A, N k) is the distance between A and N k. We
define a neighborhood value of a data point with
respect to a value k, as the radius of the circle that
encompasses its k nearest neighbors. Thus x is the
neighborhood value of A.

Theorem 1
Consider any one kNN, Ni of A and let d

(A, N i) = y. Then the circle with center as N i and
radius x+y, encompasses all the points N1, N2, . . . ,
Ni-1 ,Ni+1, . . . , Nk and A (refer Figure 4.1).

Proof
Since radius of the circle is x + y and point

A is at distance y from Ni, A lies in the circle.

Now consider any kNN of A other than N i
say N j. Let d (N i, N j) = w. Then in the ΔΔΔΔΔ (Ni, Nj, A),
by triangle inequality w < y + z. Since Nk is the k th
nearest neighbor, z < x. Therefore, w < x + y.
Thus Nj lies inside the circle. Hence proved.

Based on theorem 1, the working of the
kNN computation algorithm is given below.
1) Initialize P S and HP S to be empty sets.

Here P S is the list of points which are to be
processed and HP S is the set of points which
are already processed.

2) Let d i be any data point whose neighbors
are not yet found. Its kNN set {Ni,….. Nk} is
computed by determining the distance of d i
with every data point. Let NBHd i be the
neighborhood value of d i. The kNN set is
then added to a processing list P S which is
a set of ordered pairs (N i, NBHd ii+ d(N i,
d i)) where d(N i, d i) denotes the distance
between N i and d i .

3) For each pair (T, V)∈ P S, determine all
points {P1, . . . , P l} that lie inside the circle
that is drawn with T as center and V as
radius. Note that l > k by theorem 1. The
distance of T from each Pi, ∀i = 1, . . . , l is
computed and the kNN set of T, {O1 , . . . ,
Ok} is determined as the k closest points out
of P1, P2, . . . , Pl.

4) Let NBHT be the neighborhood value of T.
Then the set of pairs (Oi, NBHT + d(T, Oi))Fig. 1: Efficient Computation of kNN

34 Gilhotra & Hiranwal, Orient. J. Comp. Sci. & Technol., Vol. 4(1), 29-39 (2011)

for all i = 1, . . . , k, such that O i is not present
in any of the ordered pairs in P S and in HP
S, is added to P S. The pair (T, V) is removed
from P S and T is added to HP S.

5) Step 3 and 4 are repeated until P S becomes
empty.

6) Repeat step 2, 3, 4 and 5 till the k neighbors
for all the data points are found.

The above approach helps us in
overcoming the earlier O(n² log n) time complexity
of computing the k nearest neighbors for each point.
Next we present an analysis of the time complexity
of the above approach. We also provide
experimental results in which support the obtained
worst case bounds on the time spent.

Let SP be the set of points for which
the algorithm computes the distance w.r.t all the
points in D. For each point in SP, n-1 distance values
obtained are sorted to compute the k nearest
neighbors. Therefore, the total complexity of this
step is s*(n-1)*log(n-1) which is of the order
O(s*n*logn). Here | SP | = s. For the remaining points
in D- SP, the algorithm calls Expand Neighborhood
Search() function. For each point N∈ (D-SP):
(i) A region query is issued around N. Let m

be the number of points that fall within the
region.

(ii) The distance values of N to each of the
neighbors obtained in (i) are computed and
sorted.

The complexity of step (i) is O (logn) and
that of the second step is O (mlogm). Therefore,
the total complexity due to all points in D- SP is O
([n- s]* [logn + mlogm]), (since | D- SP | = n- s).
Hence the total complexity due to all points is:
O (s*n* logn + (n- s)* [logn + mlogm])

The overall cost for computing the k
nearest neighbors can be given as O (c* n* log
n + k2 * n* log (n/c)). The experimental results
presented in Table 1 show that as the difference
between the k value and the size of the dataset
i.e. n increases, the efficiency gained by employing
the proposed approach also increases.

In the next section, we discuss the
information that is communicated to the central

server, using which the global clusters can be
acquired.

Acquiring the Local Model
After having clustered the data locally at

each local site, we would like to communicate to
the central server adequate amount of information
that will describe the local clustering results. These
local models have to be such that they give an
accurate description of the local clustering as far
as possible.

The information that can be communicated
from the local clusters in the form of local model is
• Cluster statistics such as density information

and number of data points in the cluster.
• Representative points from the cluster.

These could be chosen from the core/dense
regions of the cluster and also from the
boundary regions of the cluster.

Acquiring the Global Model
Once the local model from each site is

communicated to the central server, a global
merging algorithm has to be employed on the local
models to acquire the global model. Let there be
any two representative SCCs of clusters C ij (jth

cluster from ith site) and Cmn(mth cluster from
nth site), which are candidates to be merged.
Consider the points p, t∈ Cij and q, r∈ C mn.
The clusters C ij and Cmn would merge if for any
value k, p∈ kRNN(q) and r∈ kRNN(t) as in Fig.
5.1. Here p, q, r, t are the representatives that have
been communicated to the central server in the
respective local models.

Fig. 2: Merging of Clusters

As can be seen, the global merging
algorithm is required to cluster the data that is
communicated in the form of representatives of the
local clusters. At the central server, we again apply
the Stability based RECORD algorithm to cluster

35Gilhotra & Hiranwal, Orient. J. Comp. Sci. & Technol., Vol. 4(1), 29-39 (2011)

these local representatives effectively. As stated
earlier, the termination condition for the SRA is as
follows: the number of SCCs in both the subgraphs
(kRNNG<k for the outliers and kRNNG≥k for the
core points) are observed for some l consecutive
values of k and if they remain constant then the
clusters obtained are considered to be stable. The
global clusters obtained at this stage might not be
complete

Updation of the global and the local models
After finishing the global clustering, we

send the complete global model to all the client sites.
Using this information, the client sites can assign
each of the objects a label that corresponds to the
global cluster to which it belongs.

RESULTS

We conducted the experiments on
synthetic datasets and real life datasets to evaluate
the efficacy of our approach.

Results for efficient computation of nearest
neighbors

In Table 1 we present the results obtained
using the approach proposed by us for computing
the k nearest neighbors of a data point efficiently.
Since the results in [11] show that computing just
100 nearest neighbors is sufficient to get the clusters
present in a dataset we take the k value as 100
and show the results for it.

the time taken by the naive approach where to get
the k nearest neighbors the entire similarity matrix
is computed. As is demonstrated by the results,
with the increase in the difference between the k
value i.e. 100 and the size of dataset, the efficiency
gained by the proposed technique also increases.

Efficacy of the CIODD approach
In this section we discuss the various

efficiency and accuracy results obtained for our
framework.

Results on synthetic datasets
Syndeca tool set was used to generate

synthetic datasets with clusters for
experimentation. In order to compute the total time
taken by our approach, we carried out the local
clustering for all sites and denoted the time taken
by these as a set{T

LCMi}for i = 1, . . . , s. Here the
time taken by the individual sites for this updation
phase was denoted by a set{TUM} for i = 1, . . . , s.
The overall runtime T for the approach was
calculated using the formula given below:

T = T g + max {TLCi}, +max {TUMi}

The variable i spans from 0 to s taking into
considerations all the local sites. Here s is the total
number of sites, Tg is the time taken by the global
merging algorithm GM, T LCMi is the time taken for
LCM on the ith site and T UMi is the time taken for
the updation phase UM on the ith site.

In figure 1 we provide a screen-shot of the
results for the Chameleon dataset 1 used in
hierarchical clustering. The dataset had 8000 points
and six clusters which were very closely spaced
and were of various shapes and sizes. The dataset
was distributed on four sites. The amount of
information communicated as the local models was
10%. As a 1result of the distribution the original
clusters were distributed in the form of smaller and
sparser clusters and were sent to different local
sites. Some of the sites did not even have the
complete picture of some clusters with them. As
shown in the Figure 2, our approach was able to
detect all these clusters accurately after the final
phase.

Table 1: Speed up gained in computing
the k nearest neighbors

Dataset size Ratio T1/T2

500 1.089
1000 2.280
3000 3.373
5000 5.735
10000 9.654
100000 34.173

There are two columns in the table1.
Column 1 shows the size of the dataset and column
2 shows the ratio T1 /T2. T2 is the time taken by the
approach proposed by us in the Section 2.3. T1 is

36 Gilhotra & Hiranwal, Orient. J. Comp. Sci. & Technol., Vol. 4(1), 29-39 (2011)

Fig. 2: Screen-shots for our Distributed Clustering approach

Experiments with real life datasets:
In this section we provide the results for

the proposed CIODD framework on three real life
datasets. We also provide the performance of the
DBDC approach on the same datasets and
compare the accuracy results obtained by both. To
get the performance results for DBDC, we
implemented it in C++. All the experiments were
carried out on an AMD dual 64 bit machine with 2
GB of RAM. The evaluation metric that we use for
the real life datasets is cluster homogeneity. We
define accuracy as:

accuracy = (Σk
i=0 ai)/n

Here n is the total number of points to be
clustered and ai is the number of points that belong
to the dominance class of the kth cluster.

Iris Dataset
The Iris flower data set or Fisher’s Iris

data set is a multivariate data set introduced by
Sir Ronald Aylmer Fisher (1936). The dataset

consists of 3 classes, 50 instances each, where
each class refers to a type of iris plant namely Iris
Setosa, Iris Versicolor, and Iris Verginica. The first
class is linearly separable from others while the latter
two are not linearly separable. There are four
continuous attributes and a target attribute which
determines the class of the tuple. The attribute
measurement consists of the sepal and petal
lengths and widths in cms.

We now present the comparison of CIODD
with a distributed clustering algorithm DBDC and
three centralized clustering algorithm k- means,
DBSCAN and SRA in Table 2. For CIODD and
DBDC, we distributed the data on two sites such
that each site had 75 points. For the CIODD
approach the degree of overlap was kept to be 0
so that the data that is processed by each approach
on any site is same. First row in the table
corresponds to the number of sites the data was
distributed. Since the first three approaches are
centralized, the entire data resides on a single site.
Next row pertains to the amount of data processed

37Gilhotra & Hiranwal, Orient. J. Comp. Sci. & Technol., Vol. 4(1), 29-39 (2011)

Table 3: Comparison of various distributed clustering approaches

Property CIODD SRA DBDC SDBDC DMBC KDEC

Efficiency yes Yes yes yes Yes Yes
Clusters of mixed densities yes Yes no no - Yes
Clusters of varied shapes yes Yes yes yes - -
Privacy no No no no Yes Yes
Needs parameters for local no No yes yes Yes -
clustering
Amount of info communicated Yes Yes no Yes no yes
for obtaining global model is
tunable
Detects clusters lost due to yes Yes no no No No (if expected

privacy is less,
then individual
tuples of outliers
are send to
complete the
global clusters).

No of rounds of communication 2 2 1 1 1 2

Table 2: Results on IRIS dataset

Kmeans DBSCAN DBDC SRA CIODD

No. of sites 1 1 2 1 2
Dataset size 150 150 75 150 75
Parameters K=3 Mpts=3 LMpts=3 None None

Eps=0.5 LEps=1
GMPTS=2
GEps=2

No.of clusters 3 10 5 23 6
Info communicated - - 20% - 20%
Accuracy 0.667 0.5 Site1:0.653 0.663 Site1:0.653

Site2:0.623 Site2:0.826
Final:0.634 GM:0.733

UM:0.812

at each site. Third row gives the details about the
parameters that are needed to carry out the
clustering. Here k, Mpts, Eps, Lpts, LEps, Gpts,
GEps refer to number of clusters, minimum points,
epsilon, local minimum points, local epsilon, global
minimum points and global epsilon respectively.
These are the parameters that are required by the
k-means, DBSCAN and the DBDC respectively. As
stated in [12], we set the global minimum points as
2 and the global epsilon is set twice of the local

epsilon. Also for k- means we kept the k value as 3
since we knew the number of classes beforehand.
It can be seen that the SRA and CIODD need no
parameters to carry out the local clustering. The
next two rows give the number of clusters obtained
and the amount of information communicated in
various forms to get the results. The last row gives
the accuracy calculated using the formula stated
above. As can be seen the feedback loop i.e. the
UM of the CIODD approach helps it to get a higher

38 Gilhotra & Hiranwal, Orient. J. Comp. Sci. & Technol., Vol. 4(1), 29-39 (2011)

accuracy as compared to the accuracy obtained by
the DBDC approach. Also the performance of the
CIODD approach is comparable to centralized
clustering.

Comparison of the existing work with CIODD
As discussed in the earlier sections of the

thesis, a distributed clustering algorithm is expected
to exhibit several properties.

CONCLUSIONS

In this thesis, we present CIODD, a
cohesive framework for the identification of
clusters and outliers in the distributed environment.
The presented framework uses homogeneously
distributed data and is a centralized ensemble based
method. It requires two rounds of communication
between the central server and the local sites. In
the first round a global model is obtained from the
local models generated as a result of the clustering
at local sites. The second round is employed to
complete and purify the global clusters obtained in
the first round. CIODD uses the parameter free
clustering algorithm SRA for the clustering of data
at local sites. It also proposes an efficient way to
compute the kNN. Unlike previous centralized
ensemble based approaches for homogeneous

distributed data, using CIODD, we are able to
detect clusters of mixed densities and varied
shapes placed in close vicinity of each other.
Earlier approaches also fail to handle the local
outliers, where as CIODD is able to do so because
of the presence of the grid based feedback loop.
Moreover, the increase in accuracy obtained due
to the introduction of the feedback loop is much
more than the increase in the overhead caused by
its computation. We also show that without
compromising much with the accuracy, the time
taken by CIODD is much less than the classical
centralized clustering.

For example we were able to cluster a set
of 20,000 points by distributing the data on six sites
with an accuracy of 98.54% with the amount of
information communicated being equal to 9% of the
data. Also the time taken by the entire process
was 75% less than what was taken by a centralized
solution.

Using the results on a synthetic data
stream, we show that the CIODD framework might
also be used to cluster data streams. Thus, as a
part of future work we would like to explore the use
of the proposed framework in clustering data
streams.

1 A. K. Jain, M. N. Murthy, and P. J. Flynn.,
“Data clustering: A review,”

2 F. E. Grubbs., “Procedures for detecting
outlying observations in samples,” in In
Technometrics., pp. 2-21 (1969).

3 P. Berkhin., “Survey of clustering data mining
techniques.,” in Tech. Report, Accrue
Software.

4 D. Fasulo., “An analysis of recent work on
clustering algorithms: a technical report,”

5 S. Guha, R. Rastogi, and K. Shim., “Cure:
An efcient clustering algorithm for large
databases.” in SIGMOD, (1998).

6 T. Zhang, R. Ramakrishnan, and M. Livny,
“Birch: An efficient data clustering method
for very large databases,” in SIGMOD,
(1996).

REFERENCES

7 M. Ester, H. P. Kriegel, J. Sander, and X. Xu.,
“A density based algorithm for discovering
clusters in large spatial databases with noise.”
(1996).

8 G. Karypis, E. Han, and V. Kumar,
“Chameleon: Hierarchical clustering using
dynamic modeling,” Computer, 32(8): 68-75
(1999).

9. S. Bandyopadhyay, C. Gianella, U. Maulik,
H. Kargupta, K. Liu, and S. Datta, “Clustering
distributed data streams in peer-to-peer
environments,” Information Science Journal,
(2004).

10. M. Klusch, S. Lodi, and G. L. Moro,
“Distributed clustering based on sampling
local density estimates,” in Proceedings of
International Joint Conference on Artificial

39Gilhotra & Hiranwal, Orient. J. Comp. Sci. & Technol., Vol. 4(1), 29-39 (2011)

Intelligence (IJCAI 2003), (Mexico), 485-490
(2003).

11. S. Vadapalli, S. R. Valluri, and K. Karlapalem,
.A simple yet effective data clustering
algorithm,. ICDM, 2006.

12. E. Januzaj, H. P. Kriegel, and M. Pfeiûe,
“Towards effective and efficient distributed
clustering,” Workshop on Clustering Large
Data Sets (ICDM2003), 2003.

13. E. Januzaj, H. P. Kriegel, and M. Pfeiûe,
“Scalable density-based distributed
clustering,” Proc. 8th European Conference
on Principles and Practice of Knowledge
Discovery in Databases (PKDD), (2004).

14. D. K. Tasoulis and M. N. Vrahatis,
“Unsupervised distributed clustering,” in In
Proceedings of the IASTED International
Conference on Parallel and Distributed
Computing and Networks. Innsbruck,
Austria., (2004.

15. S. Guha, N. Mishra, R. Motwani, and L.
O’Callaghan, Clustering Data Streams.
FOCS.

16. “Cluster ensembles - a knowledge reuse
framework for combining partitionngs,” pp.
583-617, Journal of Machine learning
Research, Dec 2002.

17. J. Ghosh, A. Strehl, and S. Merugu, “A
consensus framework for integrating
distr ibuted clusterings under limited
knowledge sharing,” in Proceedings of NSF
Workshop on Next Generation Data Mining,
pp. 99-108 (2002).

18. A. Topchy, A. K. Jain, and W. Punch,
“Combining multiple weak clusterings,” pp.
331-338 (2003).

19. A. Topchy, B. Minaei-Bidgoli, A. K. Jain, and
W. F. Punch, “Adaptive clustering ensembles,”
1: 272-275 (2004).

20. A. P. Topchy, M. H. C. Law, A. K. Jain, and A.
L. Fred, “Analysis of consensus partition in
cluster ensemble,” 225-232 (2004).

21. J.R.Vennam and S.Vadapalli, “Syndeca: A
tool to generate synthetic datasets for
evaluation of clustering algorithms.,” pp. 27-
36 COMAD, (2005).

