
INTRODUCTION

Most of fixed point theorems for mappings
in metric spaces satisfying different contraction
conditions may be extended to the abstract spaces,
like Hilbert, Banach and locally convex spaces etc
with some modifications. Some such interesting
classes of contraction by Ciric1,Dotson2 proved fixed
point theorems for non-expansive mappings on star
shaped subsets of Banach spaces (i.e. || Tx-Ty|| ≤
||x-y|| for x,y ∈ C). Then T has a fixed point in C.
Pandhare and Waghmode³ have proved class of
pairs of generalized contraction type mapping in
Hilbert space on the line of Ciric1 and proved some
common fixed point theorems and some such
interesting classes of contraction introduced by
Kannan4. Sayyed and Badshah5 proved a class of
pair of generalized contraction type mapping in
Hilbert space. The result of this theorem is inspired
by the results due to Dubey6, Naimpally and Singh7.

Definition
Let X be a Banach space and C be a non-

empty subset of X. Let T1, T2 : C → C be two
mappings. The iteration scheme called I-scheme is
defined as follows :
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x0 ∈ C, ...(1)

y2n = β2nT1x2n + (1- β2n)x2n, n ≥ 0

x2n+1 = (1-α2n)x2n + α2nT2y2n, n≥ 0 ...(2)

y2n+1 = β2n+1T1x2n+1 + (1- β2n+1)x2n+1, n ≥ 0

x2n+2 = (1-α2n+1)x2n+1 + α2n+1  T2y2n+1, n≥0 ...(3)

In the Ishikawa scheme, {α2n}, {β2n} satisfy

0 ≤ α2n ≤ β2n ≤ 1, for all n lim
n→∞ . β2n = 0 and Σα2nβ2n = ∞.

In this paper we shall make the assumption that

(i) 0 ≤ α2n ≤ β2n ≤ 1, for all n,

(ii)  lim
n→∞  α2n = α2n > 0, and

(iii)  lim
n→∞  β2n = β2n < 1.

We know that Banach space is Hilbert if
and only if its norm satisfies the parallelogram law
i.e. every x,y ∈ X (Hilbert space).

||x + y||2 + ||x - y||2 = 2||x||2 + 2||y||2 ...(4)

    which implies, ||x + y||2 ≤ 2||x||2 + 2||y||2 ...(5)



356 Lateef & Bhattacharya, Orient. J. Comp. Sci. & Technol.,  Vol. 3(2), 355-357 (2010)

We often use this inequality throughout the
result.

Further, we prove the result concerning the
existence of common fixed point of pairs of
mappings satisfying the contraction condition of the
type

||Tx-Ty||2 ≤ h Max { ||x - y||2, ||x - Tx||2,
||y - Ty||2,1/4(||x-Ty||2 +||y - Tx||2)} ...(6)

Theorem
Let X be a Hilbert space and C be a closed,

convex subset of X. Let T1 and T2 be two sets of
mapping satisfying

||T1x–T2y||2 ≤ hMax{||x - y||2, ||x – T1x||2,
||y–T2y||2,1/4(||x–T2y||2+||y–T1x||2)} ...(7)

where h is real number satisfying 0 ≤ h <
1. If there exists a point x0 such that the I-scheme
for T1 and T2 defined by (2) and (3) converges to a
point p, then p is common fixed point of T1 and T2.

Proof
It follows from (2) that x2n+1 – x2n =  α2n (T2y2n

– x2n).  Since x2n → p, ||x2n+1 – x2n|| → 0. Since {α2n} is
bounded away from zero, ||T2y2n – x2n|| → 0. It also
follows that ||p – T2yn|| → 0. Since T1 and T2 satisfies
(7), we have

||T1x2n–T2y2n||
2≤hMax{||x2n-y2n||

2,||x2n–T1x2n||
2,

||y2n – T2y2n||
2,

1/4 (||x2n–T2y2n||
2+||y2n–T1x2n||

2)} ...(8)

Now, ||y2n– x2n||
2 =||β2nT1x2n +(1- β2n) x2n–

x2n||
2 =||β2nT1x2n+x2n -β2nx2n– x2n||

2

= ||β2n(T1x2n – x2n) ||
2  = β2n

2 || (T1x2n – T2y2n) + (T2y2n –
x2n) ||2 ≤2β2n

2||T1x2n–T2y2n||
2+2β2n

2||(T2y2n–x2n)||
2 ≤

2||T1x2n–T2y2n||
2+2||(T2y2n–x2n)||

2 ...(9)

||y2n – T2y2n||
2 = ||β2nT1x2n + (1- β2n) x2n – T2y2n||

2

=||β2nT1x2n+(1-β2n)x2n-T2y2n+β2nT2y2n–β2nT2y2n||
2

=||β2n(T1x2n – T2y2n) + (1- β2n) (x2n – T2y2n) ||
2

≤ 2β2n
2 ||T1x2n – T2y2n||

2 + 2(1- β2n) || x2n – T2y2n||
2

≤ 2||T1x2n – T2y2n||
2 + 2||x2n - T2y2n||

2             ...(10)

||y2n – T1x2n||
2 = ||β2nT1x2n + (1- β2n) x2n – T1x2n||

2 = ||
(1- β2n)(x2n - T1x2n) ||

2

= (1- β2n)
2 ||x2n – T1x2n||

2   = (1-β2n)
2 ||(x2n – T2y2n) +

(T2y2n – T1x2n)||
2

≤2(1-β2n)
2||x2n–T2y2n||

2+2(1-β2n)
2||T2y2n–T1x2n||

2

≤ 2||x2n–T2y2n||
2 + 2 ||T2y2n - T1x2n||

2             ...(11)

from (8), (9), (10) and (11) can be written as :

||T1x2n–T2y2n||
2≤hmax {2||T1x2n – T2y2n||

2 + 2 ||T2y2n –
x2n||

2),
2||x2n – T2y2n||

2 + 2 ||T2y2n – T1x2n||
2, 2||T1x2n – T2y2n||

2

+ 2||x2n – T2y2n||
2), 1/4(3||x2n–T2y2n||

2+2||T2y2n–
T1x2n||

2,)} ≤ h (2||T1x2n – T2y2n||
2 + 2||T2y2n – x2n||

2)
≤ 2h/1-2h ||x2n – T2y2n||

2

Taking limit as n → ∞, we get ||T1x2n – T2y2n|| → 0.
It follows that  ||x2n – T1x2n||

2 ≤ 2||x2n – T2y2n||
2 + 2||T2y2n

– T1x2n||
2 → 0.

And ||p – T1x2n||
2 ≤ 2||p – x2n||

2 + 2||x2n – T1y2n||
2 → 0

as n → ∞.

If x2n, p satisfies (7), we have
||T1x2n–T2p||2≤ h max {||x2n – p||2, ||x2n – T1x2n||

2, ||p –
T2p||2,
1/4(||x2n – T2p||2 + ||p – T1x2n||

2)}
≤ h max {||x2n – p||2, ||x2n – T1x2n||

2, ||p – x2n + x2n -
T2p||2,
1/4(||x2n–T1x2n+T1x2n–T2p||2+||p – T1x2n||

2)}

Using inequality (5), we have
||T1x2n–T2p||2≤h max {||x2n – p||2, ||x2n – T1x2n||

2, 2||x2n

– p||2,
+ 4||x2n–T1x2n||

2 + 4||T1x2n - T2p||2,
1/4(2||x2n – T1x2n||

2 + 2||T1x2n – T2p||2 + ||p – T1x2n||
2)}

Taking limit as n → ∞, we get ||T1x2n – T2p|| → 0.
Finally, ||p – T2p||2 = ||p – T1x2n + T1x2n – T2p||2

≤ 2||p – T1x2n||
2 + 2||T1x2n – T2p||2 → 0, as n → ∞.

Showing that p = T2 p. Similarly, we can
prove that p = T1 p. Thus p is a common fixed point
of T1 and  T2. This completes the proof.
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