Oriental Journal of Computer Science & Technology

Vol. 3(2), 349-353 (2010)

Analysis of routing attacks in peer to peer overlay networks

ANIL SAROLIYA! and VISHAL SHRIVASTAVA?2

'Department of Computer Science, Arya College of Engineering and IT, Jaipur (India).
2Department of CS, Arya College of Engg. & IT, Kukas, Jaipur (India).

(Received: May 23, 2010; Accepted: July 03, 2010)

ABSTRACT

Peer-to-peer (P2P) systems are distributed systems in which nodes act as peers, such systems
are becoming very popular in applications like file sharing. In this kind of architecture, security in each
transaction is fundamental requirements. The aim of a Distributed hash tables provides the method for
locating resources (generally files) within a P2P network. In this paper our target is to analyze the
routing attacks on existing protocols of such networks. Chord is preferred as the target DHT protocol
for various causes which will be discussed in the paper. Routing attacks analysis finds the vulnerabilities
of existing protocols and anticipates a defense mechanism which is discussed herewith.

Key words: Routing attacks, peer to peer overlay networks.

INTRODUCTION

Overview of DHT and CHORD
Distributed Hash Table

DHT is capable to accomplish two of our
main needs. DHT is the distributed data structures
which hold key and value pairs in a fully distributed
manner. It also puts each key-value pair on a single
or limited node only. To decide on which node a
specific pair has to be stored we need a mapping
method. In addition, joining and disjoining a node
does not cause all the keys to be remapped. A
specific hashing mechanism (consistent hashing)
is used in DHT to map the key. Such hashing
separates the key space into partitions. This process
employs the distance concept to map a key to a
certain node. Distance is a logical aspect and not
required to be related to physical distance of nodes
in network. In P2P network a node which is actually
in France could be closer to a node in China than a
node in the same country. The mapping function is
being used when we need to insert a new key-value
pair into the hash table and also when we want to
find the key. This function uses the key itself to
determine the node which will store a pair. Then,
when the same key is being queried, the same
mapping function can determine the place which

the key is being stored and therefore make retrieval
of the value faster.

Distributed hash table (DHT) protocols
allow resources to be located quickly in
decentralized distributed systems. Resources can
include things such as files, directory entries,
discussion messages, or any other type of object
that can be stored on and retrieved by nodes in a
distributed system.

A DHT consists of a group of participating
nodes, where each node maintains a small amount
of information about a subset of other nodes in the
system and routes lookup requests through the
system towards their destinations. Each resource
has a key associated with it. Given a key, a DHT
can locate the node responsible for the associated
resource quickly, typically within O(log n) hops,
where n is the number of nodes in the system. The
number of other nodes in the system that each node
needs to be aware of is also typically O(log n).
Popular DHTs that have received a great deal of
attention include CAN, Chord, and Pastry.

Chord Routing Algorithm
In Chord, both nodes and keys are given



350

numerical identifiers. The identifier for a key is
obtained by hashing that key with some hash
function that is used by all of the nodes in the system
which returns integers of some bit length m. A node
is assigned an identifier by hashing its IP address.
Nodes and keys are then arranged in an identifier
ring modulo 2™. Each key’s value is stored on the
first node with an identifier equal to or following that
key’s identifier in the ring. This aspect is illustrated
following Fig. 1.

In the Chord ring shown in Fig. 14, the hash
bit length mis 6. There are 10 nodes in the network
(shown with N prefixes followed by the node’s
identifier) and 5 keys (shown with K prefixes followed
by the key’s identifier) are being stored. Each key is
shown being stored on the first node that succeeds
that key’s identifier in the ring, as indicated by the
arrows.

In order to find nodes that are responsible
for keys, each node has to store some routing
information. In Chord, this routing table is called a
“finger table”

N1

T ]

Fig. 1: An illustration of
keys mapping to nodes

The Chord finger table for a node with
identifier id contains m entries, numbered from 0 to
m-1. For finger table entry /, the node stored in that
entry is the first node whose identifier succeeds id +
2 (mod 2. It is possible (and often probable) to

Saroliya & Shrivastava, Orient. J. Comp. Sci. & Technol., Vol. 3(2), 349-353 (2010)

have duplicate entries in the finger table. Fig. 2 shows
a sample finger table with an illustration of how the
finger table is derived for node N8. NB8’s last finger
table entry should be the node that succeeds 8+25.
This node is N42, so a reference to N42 is stored in
the last finger table entry of N8’s finger table. The
rest of the finger table entries are filled in with the
same process for i =0, 1, 2, 3, and 4.

As Fig. 2 illustrates, each node only has
information about a subset of the nodes in the
overall system. As the system gets much larger,
the number of unique nodes in each node’s finger
table becomes a smaller fraction of the overall
number of nodes. The size of the finger table has
been shown by [4] to be O(log n) where n is the
number of nodes in the system. The advantage of
the finger table is that when performing a lookup
we can jump about half of the remaining distance
between the node doing the routing and the node
responsible for the key.

This divide and conquer approach to
routing lookup requests has been shown by [4] to
use O(log n) hops for each route. The algorithm for
routing a lookup request from a node is simple:
forward the request to the last finger table entry
that precedes the identifier of the key.

The node preceding the destination node
will detect that the key falls between itself and its
successor and return information about its
successor to the node performing the lookup.

Fig. 2: An example finger table, taken from *



Saroliya & Shrivastava, Orient. J. Comp. Sci. & Technol., Vol. 3(2), 349-353 (2010) 351

Fig. 3 shows an example of the route a
lookup request might take through a Chord network.
In this figure, N8 is performing a lookup request for
key K54. For a new node to join a Chord network, it
needs to know of any one node that is already in
the network. Finding a node that is already in the
network is done out of band. The joining node will
then use this “bootstrap” node to perform a lookup
on its own identifier.

The node returned by this lookup will be
the new node’s successor in the Chord ring. The
new node will send a message to its successor
notifying it that it is now that node’s predecessor
and the successor will inform its previous
predecessor that the new node is now its successor.

N1

lookup(54)
G

N51
N14

N48

N21

N32

Fig. 3: An example of the route taken by a
lookup in a Chord network, taken from*

The new node will then use its successor
to perform the appropriate lookups to fill in its finger
table. Since nodes will be joining and leaving
continuously, each node needs to periodically re-
perform these lookups in order to keep its finger
table up to date.

Chord Attack Vulnerabilities

Since DHT lookup requests rely on other
nodes in the system to follow the protocol correcily,
they are vulnerable to several types of attacks ([4];

(5])-

One category of attack is routing attacks,
and this is the category that this paper will focus on
defending against. A routing attack occurs when a
node intentionally drops lookup requests or forwards
the lookup request to another node in a manner
that violates the protocol specification. Examples
of incorrect forwarding would be to forward the
request to nodes further away from the destination,
to random nodes, or to other colluding malicious
nodes. Colluding malicious nodes might run a
separate Chord partition or a “sub-ring” in a real
Chord network and capture lookup requests and
forward them into this sub-ring. This attack makes
it seem as if lookup requests are being forwarded
correctly and it could even cause nodes joining the
system to unknowingly join the malicious partition.

Another category of attack is an attack
where the node responsible for a key returns
incorrect values for that key. It is difficult for an
attacker to target specific keys in Chord since a
malicious node’s identifier is a hash of its IP address
which forces a node into a specific area of the
network and makes it easy for other nodes to verify
that a node is using its correct identifier. It is left to
higher levels in the P2P application to verify that
the retrieved data from nodes is correct once the
lookup process completes successfully. Chord
allows for a key’s corresponding value to be stored
on multiple nodes (called replicas) by using multiple
hash functions to obtain multiple identifiers for keys.
This paper will not focus on attacks where nodes
responsible for keys misbehave; instead we focus
on preventing malicious nodes from keeping lookups
from reaching the node(s) responsible for them.

Yet another method of attacking a Chord
network is for a bootstrapping node to bootstrap a
joining node into a malicious network instead of the
intended network. Bootstrapping is out of band,
and there is little that can be done if a malicious
node is used to bootstrap. We will therefore assume
that the node used for bootstrapping is trusted.

Proposed Defense Mechanisms
To mitigate routing attacks on Chord, we
propose the following major changes to the protocol:
Instead of lookup requests being forwarded
from node to node, the node performing the
lookup will directly contact each node and



352

request the next hop on the route to the
destination.

Each hop will be verified for probable
correctness by checking the numerical
difference between node identifiers in the hop
to statistical information about network
density derived from the finger table of the
node performing the lookup.

If a hop is determined to be invalid, the node
performing the lookup will backtrack to the
previous node on the route and ask for a
different finger table entry.

Each of these changes is described in
more detail in the following sections.

Source Node Routing

In the Chord protocol, a node performing
a lookup forwards the lookup request to the closest
preceding node in its finger table. Instead of
forwarding our lookup request out into the un-trusted
network, we will ask each hop in the route for the
next hop ourselves. This is possible in overlay
networks since we can establish a “direct” overlay
connection to any node on the physical network.
This change is straightforward to implement.

When we perform lookups from the
source, when we detect a malicious node along our
route we can go back to the last good node on that
route and ask for an alternative next hop. Again,
we cannot rely on other nodes to perform these
actions since other nodes are not trusted.

Route Hop Verification

Route hop verification is the most
important change being made to the protocol. The
goal of hop verification is to answer this question:
Node A returned a reference to Node B as the next
hop on the route to some key. Is this hop correct?

The main idea is to look at the distance
between the identifier of the next hop returned by
node A and the “pointer” used by node A for the
finger table entry of that next hop and determines if
this distance is likely given the density of the
network. A finger table entry pointer for finger table
entry j of a node with identifier id is id + 2" (mod k).
This is the identifier that a node looks up when it is
filling in finger table entry i. We know that the finger

Saroliya & Shrivastava, Orient. J. Comp. Sci. & Technol., Vol. 3(2), 349-353 (2010)

table pointer must fall between two nodes in the
Chord ring, so the distance between an entry’s
pointer and the identifier of the actual node stored
in that entry is less than the distance between that
node and its predecessor in the ring. By comparing
the numerical distance between the entry pointer
and the entry node’s identifier (the dashed line in
figure 2) to the average numerical distance between
nodes, we can determine how likely it is that a node
is using a proper node for a particular finger table
entry.

Each node will estimate the average
numerical distance between nodes in the ring from
its own finger table. Nodes in this modified version
of Chord will store additional information about its
finger table entries for this purpose. When
performing periodic finger table updates, nodes will
query the nodes in its finger table for the identifiers
of those nodes’ predecessors and successors. This
gives a node up to two unique distance samples
per finger table entry. From these samples each
node will compute its estimate of the average
distance between nodes and the standard deviation
of those distances from the average.

If the distance between a finger table
entry’s pointer and the entry node’s identifier is
greater than the average distance between nodes
plus a parameter times the standard deviation of
the average distance between nodes, we will
consider the hop invalid. Otherwise we consider it

Current Routing Hop

Returned
Next Hop

Fig. 4: An illustration of how hops are verified.



Saroliya & Shrivastava, Orient. J. Comp. Sci. & Technol., Vol. 3(2), 349-353 (2010)

valid. Fig. 4 illustrates the hop verification process.
In this diagram, the green node represents the
source node and the yellow node represents the
destination node (the successor to the destination
key.) Blue nodes are nodes that are uncompromised
and are correctly participating in the protocol.

Red nodes are malicious nodes that have
formed a sub network in order to capture lookup
requests and forward them among malicious nodes.

CONCLUSION
Through malicious node can be breach

DHT’s security, even when they only exist in small
numbers. Several security concerns must be

353

targeted in order to use DHT’s in situations where
users cannot be trusted. In this paper, we proposed
a mechanism for mitigating the effects of one of
those concerns: routing threats. Security in
structured p2p networks is difficult because of their
fully distributed nature, but we have shown that
routing security can be greatly improved using only
a relatively small amount of locally known
information.

The future work of regarding this aspect
is, the technique discussed here should transfer to
other DHTs protocols that make use of constrained
routing, and can serve as a crucial piece to a total
security solution.

REFERENCES

1. Heinbockel, W., and Kwon, M.: Phyllo: A peer-
to-peer overlay security framework. The First
Workshop on Secure Network Protocols
(NPSec), Boston, MA (2005).

2. Ratnasamy, S., Francis, P., Handley, M.,
Karp, R., Shenker, S.: A scalable content
addressable network. In: Proc. ACM
SIGCOMM’01, San Diego, CA (2001).

3. Saroliya Anil, Shrivastava Vishal: Discovering
and Recovering from Routing Threats in
Distributed Hash Tables of P2P Networks,

Jaipur, In: All India Conference on “Recent
Innovation in Software and Computer”,
ACEIT, Kukas, Jaipur (2010)

4, Stoica, I., Morris, R., Karger, D., Kaashoek,
M.F., Balakrishnan, H.: Chord: A scalable
peer-to-peer lookup service for Internet
applications. In: Proc. ACM SIGCOMM’01,
San Diego, California (2001)

5. Wallach, D.: A survey of peer-to-peer security
issues, International Symposium on Software
Security, Tokyo, Japan (2002).



