
INTRODUCTION

The evaluation scheme of model driven
architecture should be considered as an all-round
effort instead of concentrated. It must target the
entire major and minor steps before having the
layout of such scheme. The targeted evaluation
scheme must be composed of three layer
architecture:

Oriental Journal of Computer Science & Technology Vol. 3(2), 337-341 (2010)

Establishment of evaluation scheme of model driven architecture

R. VINODANI KATIYAR¹ and ROHIT CHANDRA²

¹Department of Computer Science, SITM, Uttar Pradesh Technical University, Lucknow (India).
²Department of Computer Applications, A IET Lucknow, UPTU Lucknow (India).

(Received: July 02, 2010; Accepted: August 08, 2010)

ABSTRACT

Model Driven Architecture serving to those who are mainly interested in building platform
independent software architecture. At the same time it is quite interesting to see and calculate its
performance on an overall basis. However no such scheme or matrices are available to us to do the
same. This white paper is an attempt to come forward and start with some fruitful scheme that can help
us to do the same.

Key words: Model driven architecture, Softwares.

precede the details of each layer and conclusion
will shape the root scheme finally.

Layer 01 (Stance Deliberation)
The layer o1 instances are considered on

the basic of POINTS followed by GRADES. Let us
consider first the instances of the layer before
mentioning the points and Grades. We have the
following instance to be considered,
´ Either the milieu of a system. (A-e)
´ Either operation of the system. (A-o)
´ Either use of platform by a system. (A-p)
´ All of the three. (A-t)
With the Grades follows them.

Each grade has a point range from 0 – 9.
average point Grade lower to a range of 6.5 reveals
that the instance needs modification or to be
reconsidered (it must ne noted that designer or
analyst should consider the purpose, need or
interest of a user or community before selecting
the instances) Each instance can be marked on
the following points…
1. obligation specification report.
2. Analysis of system especially with respect

to either of the grades i.e. milieu, operation
and platform feasibility.

Fig. 1:

The above core architecture reflects the
three major layers in the evaluation scheme.
However it excludes all the major and minor
considerations. The forthcoming headings will

338 Katiyar & Chandra, Orient. J. Comp. Sci. & Technol., Vol. 3(2), 337-341 (2010)

3. Independency in design specifications with
respect to either or all of the instances.

4. Selection of front and backend with respect
to either or all of the instances.

5. Implementation report prospective.

Example 01
Consider if the target/considered instance

is A-p, and the grade points are as follows.. 8.2,
7.8, 6.9, 5.4, 8.0 and the average grade point are
8.2 + 7.8 + 6.9 + 5.4 + 8.0 = 7.26. now the instance
can be picked of from the layer o1.

It could be written as A-e 7.26; A-e 7.26;
A-p 7.26; A-t 7.26. With this the layer o1
considerations are come to an end.

Layer 02 (Sculpt Deliberation)
Model consideration is the next significant

task in the core architecture of central design. Sculpt
consideration is directly proportional to the
requirement of the system to be developed.
Depending on the same we can categorized them
as follows:
a) Computational liberated
b) Platform precise
c) Platform liberated.

Evaluation of Computational Liberated Model
The Computational Liberated model when

considered indicates the computing time, methods,
techniques that are to be considered least and rest
specifications like platform, standards are to be
taken in a significant manner.

Therefore any framework for evaluation of
its performance must revolve around it. It is
assumed that the primary user of the CIM is domain
practitioner, and is not having knowledge about the
models or artifacts that are used to realize the
functionality for which the requirements are
articulated in the CIM. So any model design with
respect to CIM must be environment centric.
Emphasis on environment of a system must be
based on following criteria:
1. Degree of user friendliness.
2. Degree of Robust.
3. Level of Secured environment
4. Cost factor
5. Degree of Intact

Consider the evaluation scheme as to
judge the above mentioned criteria.
´ For first two grade points from 0-9 should be

awarded with respect to the degree. Again
any degree up to or above 7.5 is to be
considered.

´ Cost factor is considered on the following
remark “till scale of benefit is greater than
the cost” till then cost is ok. When “scale of
benefit is equal or less than the cost “then
cost factor should not be considered.

´ As far as security is considered since it
cannot be updated to a definite level of
satisfaction so it must be up to the mark with
respect to the minimal. However it should get
checked from time to time and updated too.

´ Integrity of a system is another area to be
concerned. A well integrated environment
leads to smooth working conditions. So
analysis of intact must be done in a proper
manner and any degree up to 7.5 or above
is suited well to a system.

(DEGREE is considered up to 7.5 only as
there is always a room for improvement so no one
can have perfect 10 remarks)

Evaluation of Platform precise Model
The platform precise model as name

suggests stress on platform of a system leaving
other things behind. A platform precise model
provides a set of technological concepts,
representing the dissimilar kinds of parts that build
up a stage and the services provided by that
platform. It also provides, for use in a platform exact
replica, concepts representing the dissimilar kinds
of elements to be used in specifying the use of the
platform by an application.

In the case of Platform precise Model it
must be noticed that it has combo features of
platform liberated and itself. It however stress on
the use of specific platform by the system.
Considerations must be on the following niceties:
1. Degree of dependency it holds for platform.
2. Degree of Mobility with the platform.
3. Degree of flexibility with other platforms.
4. Measure of enhancement level on same

platform
5. Security and reliability on same platform

339Katiyar & Chandra, Orient. J. Comp. Sci. & Technol., Vol. 3(2), 337-341 (2010)

6. Status level of system on a platform with
respect to the global arena.

(The above factors are concluded by
studying software factories approach on system
development: Reference: Greenfield, Jack and
Short, Keith: Software Factories. Wiley Publishing,
2004. ISBN 0-471-20284-3) The degrees must
again be either or greater than 7.5 par out of 10 as
to be considered. Measurement of enhancement
level is performed on two parameters:
(a) Requirement judged by proper requirement

analysis.
(b) Competing with global pace.
(C) Evaluation of Platform liberated model

A platform liberated model is a sight of a
system from the platform independent stance. A
PLM exhibits a par ticular extent of platform
sovereignty so as to be appropriate for apply with a
number of unlike platforms of related type.
Development of virtual system is the most common
technique. In the case of virtual machine, it can be
realized as a platform itself. Basically it is a
combination of parts and services that can be
provided to any other platform. Designing the
Evaluation of such platform is most difficult one as
it required accuracy in the same way as this model
could be served to any other platform. All an all it
describe the system, which can be associated on
every platform. In this context some benchmarks
must be considered as to ensure a class evaluation
scheme.
1. Services offered (Direct & Indirect both)
2. Degree of flexibility
3. Degree of compatibility

In the above mentioned scenario degree
of flexibility realizes its importance when platform
transformation is required. Compatibility comes to
us when other platform tries to engulf the behavior
of present platform along with its own features.

The degrees must again be either or
greater than 7.5 par out of 10 as to be considered.
Measurement of compatibility level is the most
fluctuate scenario and may vary with different
models. (Degree assigned to each content is the
matter of ANALYSIS phase and is proportional to
analyst viewpoint).

Layer 03 (Renovation Deliberation)
The subsequent walk is to take the

noticeable PIM and convert it into a PSM. This can
be finished manually, with computer aid, or
automatically. Model transformation is the process
of converting one model to another model of the
same system. The input to the alteration is the
marked PIM and the mapping. The result is the PSM
and the record of transformation.

There is a variety of tools sustain for sculpt
transformation. Transformations can employ
different mixtures of guidebook and usual tranyeta
sformation. There are different approaches to put
into a replica the information obligatory for a
transformation from PIM to PSM. Four different
transformation approaches described here
demonstrate the assortment of possibilities:
1 Manual transformation
2 Transforming a PIM that is prepared using a

profile.
3 Transformation using patterns and markings.
4 Automatic transformation.

Manual Transformation
In order to make the transformation from

PIM to PSM, design decisions must be made. These
design decisions can be made during the course of
developing a design that conforms to engineering
necessities on the accomplishment. This is a useful
loom, because these decisions are considered and
taken in the context of a specific implementation
design. This manual transformation procedure is not
really different from how much superior software
design work has been through for years. The MDA
approach adds value in two Ways:
´ The explicit peculiarity between a platform
independent model and the changed platform
specific model,
´ The verification of the transformation.

Transforming a PIM Prepared Using a Profile
A PIM may be prepared using a platform

independent UML profile. This model may be
transformed into a PSM expressed using a second,
platform specific UML profile.

The transformation may involve marking
the PIM using marks provided with the platform
specific profile. The UML 2 profile extension

340 Katiyar & Chandra, Orient. J. Comp. Sci. & Technol., Vol. 3(2), 337-341 (2010)

mechanism may include the specification of
operations; then transformation rules may be
specified using operations, enabling the specification
of a transformation by a UML profile.

Transformation Using Patterns and Markings
Patterns may be used in the specification

of a mapping. The mapping includes a pattern and
marks corresponding to some elements of that
pattern.

In model instance transformations the
specified marks are then used to prepare a marked
PIM. The marked elements of the PIM are
transformed according to the pattern to produce
the PSM.

Example
A decorator pattern with two roles,

decoration and decorated supplies a mark,
decorated. When this mark is applied to a class in a
model, the transformation might produce a class
corresponding to that class, with additional
operations and attr ibutes, a new class,
corresponding to the decoration, and an association
between those classes.

Several patterns may be combined to
produce a new pattern. New marks can then be
specified for use with the new pattern. In model
type transformations, rules will specify that all
elements in the PIM which match a particular
pattern will be transformed into instances of another
pattern in the PSM. The marks will be used to bind
values in the matched part of the PIM to the
appropriate slots in the generated PSM. In this
usage the target patterns can be thought of as
templates for generating the PSM, and the use of
marks as a way of binding the template parameters.

Automatic Transformation
There are contexts in which a PIM can

provide all the information needed for
implementation, and there is no need to add marks
or use data from additional profiles, in order to be
able to generate code. One such is that of mature
component-based development, where middleware
provides a full set of services, and where the
necessary architectural decisions are made once
for a number of projects, all building similar systems

(for example, there is a component based product
line architecture in place). These decisions are
implemented in tools, development processes,
templates, program libraries, and code generators.

In such a context, it is possible for an
application developer to build a PIM that is complete
as to classification, structure, invariants, and pre-
and postconditions. The developer can then specify
the required behavior directly in the model, using
an action language. This makes the PIM
computationally complete; that is, the PIM contains
all the information necessary to produce computer
program code. In this context, the developer need
never see a PSM, nor is it necessary to add
additional information to the PIM, other than that
already available to the transformation tool. The tool
interprets the model directly or transforms the model
directly to program code.

Such a PIM, in a mature component
development shop, with an established architectural
style and with platform specific engineering
decisions already made and being reused, can be
used to generate code (i.e. components in their code
form) not only to different CORBA Components or
J2EE platforms, but also to some of the other
application server platforms. This assumes that
someone has prepared for re-use:
(a) A model of the architectural style
(b) Detail within that model, such as a PIM type

system, that can be automatically mapped
to the various target platforms

(c) The necessary tool support to deliver the
model to the developers in the form of
profiles, model conformance checks, links to
an IDE, supporting processes, and so forth

(d) A mapping for each target platform.

The point is that, with such development
environment support, for a given application, the
application developer need develop only a PIM,
and code can be directly generated from that PIM.
The information that would otherwise be in a visible
PSM is effectively pre-packaged, and provided to
the application developer within the development
environment. Of course, a PSM representing the
generated code might be provided for the use of
the developer.

341Katiyar & Chandra, Orient. J. Comp. Sci. & Technol., Vol. 3(2), 337-341 (2010)

CONCLUSION

The evaluation scheme is basically come
up to on three grounds mentioned 1.0. The various
categories and sub categories proposed under them
are also playing vital role in the evaluation scheme.

The examples, stress points, grading system are
thus prepared to evaluate the architecture well and
thoroughly. In the case of layer three only procedure
is given as it solely depends on nature of
transformation and choice of user.

1. Fred Waskiewicz, The OMG Hitchhiker’s
Guide (A Handbook for the OMG Technology
(Adoption Process).

2. Daniels, Modeling with a Sense of Purpose,
IEEE Software, 19: (2002).

3. Shaw and Garlan, Software Architecture,
Prentice Hall ISBN 0-13-182957-2.

4. IEEE Recommended Practice for
Architectural Description of Software-
Intensive Systems IEEE Standard 1471-

REFERENCES

2000.
5. S.W. Ambler, “Agile Model Driven

Development Is Good Enough,” IEEE
Software, 20(5): 71-73 (2003)

6. A. Uhl, “Model Driven Architecture Is Ready
for Prime Time,” IEEE Software, 20(5): 70,
72 (2003).

7. B. Selic, “The Pragmatics of Model-Driven
Development,” IEEE Software, 20(5): 19-25
(2003).

