
INTRODUCTION

Testing is an expensive part of software
develop process often consisting of approximately
50% of overall budget. It also fails to find many of
the problems in software .Testing is thus a difficult
and expensive process and the development of
efficient, effective test technique is the major
research paper. Developing effective and efficient
techniques has been a major problem when creating
test cases; this has been the point of discussion for
many years. There are several well known
techniques associated with creating test cases for
a system. There are different testing techniques
which are applied in different phases of testing
process e.g black box and white box testing.
Boundary Value Analysis is one of the most popular
Black Box testing techniques.

Boundary Value Analysis[7] means an
input value may be on the boundary, just below the
boundary (upper side), just above the boundary
(lower side). It is a test selection technique that
targets fault in application at the boundaries of
equivalent class.

A great number of errors occur at the
boundaries of Input domain rather than in the
“center”. It is for this reason that BVA has been

Oriental Journal of Computer Science & Technology Vol. 3(2), 323-330 (2010)

Boundary value analysis for non-numerical variables: Strings

ANUPRIYA JAIN, SACHIN SHARMA, SEEMA SHARMA and DEEPTI JUNEJA

Manav Rachna International University, Faridabad (India).

(Received: July 07, 2010; Accepted: August 12, 2010)

ABSTRACT

The purpose of boundary value analysis is to concentrate effort on error prone area by accurately
pinpointing the boundaries of condition. Boundary value analysis produces test inputs near each sub
domain’s to find failure cause by incorrect implementation of boundary. The major limitation of boundary
value analysis is that it fails to test non-numerical variables. This paper focuses on as an antidote to
enter the string values.

Key words: Boundary value, failure, test case generation, non-numerical text.

developed as testing technique. S/w is very binary[6]
–something is either true or false .If an operation is
performed on a range of numbers, odds majority of
the numbers in the middle but may be made a
mistake at the edge .

In case of ranges for boundary value
analysis it is useful to select the boundary element
of range and invalid values just beyond the two ends.
So, If the range is

0.0 <=x<=1.0, the test cases are (0.0, 1.0)
valid input and (-0.1, 1.1) for invalid inputs. Similarly
if the input is a list attention should be focused on
the first and last elements of the list.

When you are presented with the software
test problem that involves identifying boundaries,
look for the following types
1. numeric
2. position
3. quantity

In addition to identifying boundaries8 using
equivalence classes, it is also possible and
recommended that boundaries be identified based
on the selection among input variable. Once Input
domain has been identified, test selection using

324 Jain et al., Orient. J. Comp. Sci. & Technol., Vol. 3(2), 323-330 (2010)

Boundary Value Analysis proceeds as follow:
1. Partition Input domain using uni-dimensional

partitioning, this leaves to as many partitions
as there are input variables. Alternatively, a
single partition of an input domain can be
created using multidimensional partitioning.

2. Identifying the boundary for each partition.
Boundaries may also be identified using
special relationship among the inputs.

3. Select test data such that each boundary
value occurs in at least one test input.

Test Case Generation for Numerical
variable in Boundary Value Analysis:

Consider a simple program7 to classify a
triangle. Its input is a triple of positive integers(x, y
and z) and the data type for input parameters
ensures that these will be integers greater than 0
and less than or equal to 100. The program may be
one of the following words: [Scalene; Isosceles;
Equilateral; Not a Triangle]

Standard Boundary Value Analysis test cases

min = 1, min+ = 2, nom = 100, max- = 199, max =
200

Boundary value analysis test cases

Case a b c Expected
output

1 100 100 1 Isosceles
2 100 100 2 Isosceles
3 100 100 100 Equilateral
4 100 100 199 Isosceles
5 100 100 200 Not a triangle
6 100 1 100 Isosceles
7 100 2 100 Isosceles
8 100 199 100 Isosceles
9 100 200 100 Not a triangle
10 1 100 100 Isosceles
11 2 100 100 Isosceles
12 199 100 100 Isosceles
13 200 100 100 Not a triangle

Limitations of Boundary Value Analysis
Boundary Value Analysis1 works well when

the Program Under Test (PUT) is a “function of

Worst case test cases (60-125)

Case a b c Expected
output

1 1 1 1 Equilateral
2 1 1 2 Not a triangle
3 1 1 100 Not a triangle
4 1 1 199 Not a triangle
5 1 1 200 Not a triangle
6 1 2 1 Not a triangle
7 1 2 2 Isosceles
8 1 2 100 Not a triangle
9 1 2 199 Not a triangle
10 1 2 200 Not a triangle
11 1 100 1 Not a triangle
12 1 100 2 Not a triangle
13 1 100 100 Isosceles
14 1 100 100 Not a triangle
15 1 100 200 Not a triangle
16 1 199 1 Not a triangle
17 1 199 2 Not a triangle
18 1 199 100 Not a triangle
19 1 199 199 Isosceles
20 1 199 200 Not a triangle
21 1 200 1 Not a triangle
22 1 200 2 Not a triangle
23 1 200 100 Not a triangle
24 1 200 199 Not a triangle
25 1 200 200 Isosceles
26 2 1 1 Not a triangle
27 2 1 2 Isosceles
28 2 1 100 Not a triangle
29 2 1 199 Not a triangle
30 2 1 200 Not a triangle
31 2 2 1 Isosceles
32 2 2 2 Equilateral
33 2 2 100 Not a triangle
34 2 2 199 Not a triangle
35 2 2 200 Not a triangle
36 2 100 1 Not a triangle
37 2 100 2 Not a triangle
38 2 100 100 Isosceles
39 2 100 199 Not a triangle
40 2 100 200 Not a triangle
41 2 199 1 Not a triangle
42 2 199 2 Not a triangle
43 2 199 100 Not a triangle
44 2 199 199 Isosceles
45 2 199 200 Scafene

325Jain et al., Orient. J. Comp. Sci. & Technol., Vol. 3(2), 323-330 (2010)

several independent variables that represent
bounded physical quantities”. When these
conditions are met BVA works well but when they
are not we can find deficiencies in the results.

The reason for this poor performance is
that BVA cannot compensate or take into
consideration the nature of a function or the
dependencies between its variables. This lack of
intuition or understanding for the variable nature
means that BVA can be seen as quite rudimentary.

Test Case for Non-Numerical Variable: Strings
There are several approaches to Boundary

Value Analysis, based on arguments in which we
choose a set of Test inputs for a boundary B such
that if there is a boundary shift in B with in the
implementation, then it is likely that at least one
value from T will be in the wrong sub-domain in the
implementation.

In order to simplify, the Normal Boundary
conditions are the ones defined in specification or
evident when using the software. Some boundaries
that are internal to the software are not necessarily
apparent to an end-user but still needs to be check
by software tester. These are known as sub-
boundary or Internal Boundary conditions.

The most common sub-boundary
condition is ASCII Character table:

We will demonstrate through an example
to check whether the string is palindrome or not:
#include<stdio.h>
#include<conio.h>
#include<string.h>
#define size 3
void main()
{

char strsrc[size];
char strtmp[size];
clrscr();
printf(“\nEnter String:=”);
gets(strsrc);
strcpy(strtmp,strupr(strsrc));
strrev(strtmp);
if(strcmp(strsrc,strtmp)==0)
printf(“\nEnter string %s is

pallindrom”,strsrc);
else

printf(“\n Entered str ing %s,is not
pallindrome”,strsrc);

getch();
}

Test case Generation
Input Domain [A-Z]

The boundary value test cases are:

46 2 200 1 Not a triangle
47 2 200 2 Not a triangle
48 2 200 100 Not a triangle
49 2 200 199 Scafene
50 2 200 200 Isosceles
51 100 1 1 Not a triangle
52 100 1 100 Not a triangle
53 100 1 100 Isosceles
54 100 1 199 Not a triangle
55 100 1 200 Not a triangle
56 100 2 1 Not a triangle
57 100 2 2 Not a triangle
58 100 2 200 Isosceles
59 100 2 199 Not a triangle
60 100 2 200 Not a triangle

326 Jain et al., Orient. J. Comp. Sci. & Technol., Vol. 3(2), 323-330 (2010)

Test Alphabet 1 Alphabet2 Alphabet3 Expected Output

1 A M M Not palindrome
2 B M M Not palindrome
3 M M M Not palindrome
4 Y M M Not palindrome
5 Z M M Not palindrome
6 M A M Not palindrome
7 M B M Not palindrome
8 M Y M Not palindrome
9 M Z M Not palindrome
10 M M A Not palindrome
11 M M B Not palindrome
12 M M Y Not palindrome
13 M M A Not palindrome

Robustness testing
There are 4 additional test cases which

are outside the legitimate Input domain. In addition
to the aforementioned 5 testing values (min, min+,

nom, max-, max) we use two more values for each
variable (min-, max+), which are designed to fall
just outside of the input range.

Test Alphabet 1 Alphabet2 Alphabet3 Expected Output

1 @ M M Not palindrome
2 A M M Not palindrome
3 B M M Not palindrome
4 M M M Not palindrome
5 Y M M Not palindrome
6 Z M M Not palindrome
7 L M M Not palindrome
8 M @ M Not palindrome
9 M A M Not palindrome
10 M B A Not palindrome
11 M Y B Not palindrome
12 M Z Y Not palindrome
13 M L A Not palindrome
14 M M @ Not palindrome
15 M M A Not palindrome
16 M M B Not palindrome
17 M M Y Not palindrome
18 M M Z Not palindrome
19 M M L Not palindrome

Hence total test cases in Robustness
testing are 6n+1, where n is number of input
variable.i.e 6*3+1=19 cases.

Worst-Case Testing
If we reject single fault assumption theory

of reliability and may like to see what happens when
more than one variable has an extreme value. It is
called Worst-Case Analysis.

327Jain et al., Orient. J. Comp. Sci. & Technol., Vol. 3(2), 323-330 (2010)

Test Alphabet 1 Alphabet2 Alphabet3 Expected Output

1 A A A Not Palindrome
2 A A B Not Palindrome
3 A A M Not Palindrome
4 A A Y Not Palindrome
5 A A Z Not Palindrome
6 A B A Not Palindrome
7 A B B Not Palindrome
8 A B M Not Palindrome
9 A B Y Not Palindrome
10 A B Z Not Palindrome
11 A M A Not Palindrome
12 A M B Not Palindrome
13 A M M Not Palindrome
14 A M Y Not Palindrome
15 A M Z Not Palindrome
16 A Y A Not Palindrome
17 A Y B Not Palindrome
18 A Y M Not Palindrome
19 A Y Y Not Palindrome
20 A Y Z Not Palindrome
21 A Z A Not Palindrome
22 A Z B Not Palindrome
23 A Z M Not Palindrome
24 A Z Y Not Palindrome
25 A Z Z Not Palindrome
26 B A A Not Palindrome
27 B A B Not Palindrome
28 B A M Not Palindrome
29 B A Y Not Palindrome
30 B A Z Not Palindrome
31 B B A Not Palindrome
32 B B B Not Palindrome
33 B B M Not Palindrome
34 B B Y Not Palindrome
35 B B Z Not Palindrome
36 B M A Not Palindrome
37 B M B Not Palindrome
38 B M M Not Palindrome
39 B M Y Not Palindrome
40 B M Z Not Palindrome
41 B Y A Not Palindrome
42 B Y B Not Palindrome
43 B Y M Not Palindrome

It is more thorough in the sense that
boundary value test cases are a proper subset of
worst case test cases. It requires more effort. Worst
case testing for a function of n variable generates

5n test cases as opposed to 4n+1 test case for
Boundary value Analysis .E.g. 53=125 test cases
given in the following table

328 Jain et al., Orient. J. Comp. Sci. & Technol., Vol. 3(2), 323-330 (2010)

44 B Y Y Not Palindrome
45 B Y Z Not Palindrome
46 B Z A Not Palindrome
47 B Z B Not Palindrome
48 B Z M Not Palindrome
49 B Z Y Not Palindrome
50 B Z Z Not Palindrome
51 M A A Not Palindrome
52 M A B Not Palindrome
53 M A M Not Palindrome
54 M A Z Not Palindrome
55 M A Y Not Palindrome
56 M B A Not Palindrome
57 M B B Not Palindrome
58 M B M Not Palindrome
59 M B Z Not Palindrome
60 M B Y Not Palindrome
61 M M A Not Palindrome
62 M M B Not Palindrome
63 M M M Not Palindrome
64 M M Z Not Palindrome
65 M M Y Not Palindrome
66 M Y A Not Palindrome
67 M Y B Not Palindrome
68 M Y M Not Palindrome
69 M Y Z Not Palindrome
70 M Z Y Not Palindrome
71 M Z A Not Palindrome
72 M Z B Not Palindrome
73 M Z M Not Palindrome
74 M Z Z Not Palindrome
75 M Z Y Not Palindrome
76 Y A A Not Palindrome
77 Y A B Not Palindrome
78 Y A M Not Palindrome
79 Y A Z Not Palindrome
80 Y A Y Not Palindrome
81 Y B A Not Palindrome
82 Y B B Not Palindrome
83 Y B M Not Palindrome
84 Y B Z Not Palindrome
85 Y B Y Not Palindrome
86 Y M A Not Palindrome
87 Y M B Not Palindrome
88 Y M M Not Palindrome
89 Y M Z Not Palindrome
90 Y M Y Not Palindrome
91 Y Y A Not Palindrome
92 Y Y B Not Palindrome
93 Y Y M Not Palindrome

329Jain et al., Orient. J. Comp. Sci. & Technol., Vol. 3(2), 323-330 (2010)

94 Y Y Z Not Palindrome
95 Y Z Y Not Palindrome
96 Y Z A Not Palindrome
97 Y Z B Not Palindrome
98 Y Z M Not Palindrome
99 Y Z Z Not Palindrome
100 Y Z Y Not Palindrome
101 Z A A Not Palindrome
102 Z A B Not Palindrome
103 Z A M Not Palindrome
104 Z A Z Not Palindrome
105 Z A Y Not Palindrome
106 Z B A Not Palindrome
107 Z B B Not Palindrome
108 Z B M Not Palindrome
109 Z B Z Not Palindrome
110 Z B Y Not Palindrome
111 Z M A Not Palindrome
112 Z M B Not Palindrome
113 Z M M Not Palindrome
114 Z M Z Not Palindrome
115 Z M Y Not Palindrome
116 Z Y A Not Palindrome
117 Z Y B Not Palindrome
118 Z Y M Not Palindrome
119 Z Y Z Not Palindrome
120 Z Z Y Not Palindrome
121 Z Z A Not Palindrome
122 Z Z B Not Palindrome
123 Z Z M Not Palindrome
124 Z Z Z Not Palindrome
125 Z Z Y Not Palindrome

Future Recommendation
Although ASCII is still popular as the

common means for software to represent character
data it is being replaced by a new standard called
Unicode. ASCII using only 8 bit, can represent only
256 different characters. Unicode which uses 16
bits can represent 655536 characters.

CONCLUSION

This article has investigated the problem
of generating test cases for non numerical values.
We have taken ASCII characters for generation of
robustness, and worst case testing.
1. Boundary value test case-4n+1
2. Robustness testing -6n+1

3. Worst case testing -5n

B.V.A works well for the program with
independent Input value where input value Should
be truly independent This does not make sense for
Boolean variables where extreme value are True
and False but no clear choice is available for others
like nominal, just above boundary and just below
boundary.

Since we have already proved that BVA is
suitable for numerical values, where the range can
be determined. In this article we have also proved
that it can also be applied for non-numerical values
where the range cannot be specific, we also use
special characters as Inputs.

330 Jain et al., Orient. J. Comp. Sci. & Technol., Vol. 3(2), 323-330 (2010)

REFERENCES

1. P. Jorgenson, Software Testing- A
Craftsman’s Approach, CRC Press, New
York, (1995).

2. Naryan C Debnath, Mark Burgin, Haesun
K. Lee, Eric Thiemann, A Testing and analysis
tool for Certain 3-Variable functions, Winona
State University.

3. Glenford J. Myers, The Art of Software
Testing, John Wiley and Sons, Inc (2004).

4. R.M.Hierons, Software Engineering and
Methodology, 15(13) (2006).

5. Gregor Snelting, Torsten Robschink, Jens
Krinke, Software Engineering and
Methohodology, December 06, Volume 15

6. Ron Patton, Software Testing, SAMS
Techmedia

7. KK Aggarwal, Yogesh Singh, Software
Engineering, New Age International
Publishers

8. Aditya P. Mathur, Foundations of Software
Engineering, Pearson Education

