
INTRODUCTION

Decision tree is probably the most widely
used approach to represent classifiers. Originally it
has been studied in the fields of decision theory
and statistics. However, it was found to be effective
in other disciplines such as data mining, machine
learning, and pattern recognition. Decision tree is a
classifier in the form of a tree structure (see Figure
2.4), where each node is either:
´ a leaf node - indicates the value of the target

attribute (class) of examples, or
´ a decision node - specifies some test to be

carried out on a single attribute-value, with
one branch and sub-tree for each possible
outcome of the test.

A decision tree can be used to classify an
example by starting at the root of the tree and
moving through it until a leaf node, which provides
the classification of the instance.

Many decision-tree algorithms have been
developed. One of the most famous is ID3 (Quinlan
1970’s). The choice of split attribute in ID3 is based

Oriental Journal of Computer Science & Technology Vol. 3(2), 305-310 (2010)

A novel approach to construct decision tree
using quick C4.5 algorithm

DEEPTI JUNEJA, SACHIN SHARMA, ANUPRIYA JAIN and SEEMA SHARMA

Manav Rachna University, Faridabad, Haryana (India).

(Received: June 30, 2010; Accepted: August 07, 2010)

ABSTRACT

With the rapid growth in size and number of available databases in commercial, industrial,
administrative and other applications, it is necessary and interesting to examine how to extract knowledge
from huge amount of data. There are several mining algorithms available to solve diverse data mining
problems. One of the knowledge and discovery in databases operations is the problem of inducing
decision trees. C4.5 is one of the most important algorithms in Decision Tree Induction. In this paper
the limitations of the existing C4.5 algorithm are discussed and an enhancement technique for improving
its efficiency is proposed.

Key words: Data Mining, Decision Trees, C4.5 algorithm.

on information entropy.C4.5 is an extension of ID3
(Quinlan 1986). It improves computing efficiency,
deals with continuous values, handles attributes with
missing values, avoids over fitting, and performs
other functions.

ID3 picks predictors and their splitting
values based on the gain in information that the
split or splits provide. Gain represents the difference
between the amount of information that is needed
to correctly make a prediction before a split is made
and after the split has been made. If the amount of
information required is much lower after the split is
made then that split has decreased the disorder of
the original single segment. Gain is defined as the
difference between the entropy of the original
segment and the accumulated entropies of the
resulting split segments.

ID3 was later enhanced in the version called C4.5.
C4.5 improves on ID3 in several important areas:
´ predictors with missing values can still be

used
´ predictors with continuous values can be

used

306 Juneja et al., Orient. J. Comp. Sci. & Technol., Vol. 3(2), 305-310 (2010)

´ pruning is introduced
´ rule derivation

At each node of the tree, C4.5 chooses
one attribute of the data that most effectively splits
its set of samples into subsets enriched in one class
or the other. Its cr iter ion is the normalized
information gain (difference in entropy) that results
from choosing an attribute for splitting the data. The
attribute with the highest normalized information

gain is chosen to make the decision. The C4.5
algorithm then recourses on the smaller sub lists.
This algorithm has a few base cases.
´ All the samples in the list belong to the same

class. When this happens, it simply creates
a leaf node for the decision tree saying to
choose that class.

´ None of the features provide any information
gain. In this case, C4.5 creates a decision
node higher up the tree using the expected

Table 1: Decision Tree Induction: Training Dataset

age income student credit_rating buys_computer

<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

Table 2: Database after sorting

Age Income Student Credit_rating Buys_computer

<=30 High No Fair No
<=30 High No Excellent No
<=30 Medium No Fair No
<=30 Low Yes Fair Yes
<=30 Medium Yes Excellent Yes
31…40 High No Fair Yes
31…40 Low Yes Excellent Yes
31…40 Medium No Excellent Yes
31…40 High Yes Fair Yes
>40 Medium No Fair Yes
>40 Low Yes Fair Yes
>40 Low Yes Excellent No
>40 Medium Yes Fair Yes
>40 medium No Excellent No

307Juneja et al., Orient. J. Comp. Sci. & Technol., Vol. 3(2), 305-310 (2010)

value of the class.
´ Instance of previously-unseen class

encountered. Again, C4.5 creates a decision
node higher up the tree using the expected
value.

In this paper, an algorithm that quickly
induces a decision tree has been proposed. The
paper has been organized as follows: Section 2
describes the related work in the area of C4.5 tree
induction method; section 3 proposes a method that
uses quick sort method in C4.5 algorithm to obtain
a decision tree more efficiently; Section 5 draws
the conclusion based on the comparison.

Related work
C4.5 is an algorithm used to generate a

decision tree developed by Ross Quinlan. C4.5 is
an extension of Quinlan’s earlier ID3 algorithm. The
decision trees generated by C4.5 can be used for
classification, and for this reason, C4.5 is often
referred to as a statistical classifier.

Input and Output
Input to C4.5 consists of a collection of

training cases, each having a tuple of values for a
fixed set of attributes (or independent variables) A
= {A

1,A2, ….. Ak} and a class attribute (or dependent
variable). An attribute Aa is described as continuous
or discrete according to whether its values are
numeric or nominal. The class attribute C is discrete
and has values C1, C2,……..,Cx. The goal is to learn
from the training cases a function DOM(A1) ×
DOM(A2) ×……..× DOM(Ak) ’! DOM(C) that maps
from the attribute values to a predicted class.

Divide and Conquer
Decision tree learners use a method

known as divide and conquer to construct a suitable
tree from a training set S of cases:
´ If all the cases in S belong to the same class

(Cj, say), the decision tree is a leaf labelled
with Cj

´ Otherwise, let B be some test with outcomes
b1, b2, ..., bt that produces a non-trivial
partition of S, and denote by Si the set of
cases in S that has outcome bi of B. The
decision tree where Ti is the result of growing
a decision tree for the cases in Si.

Analysis of Existing Algorithm
The algorithm is called with three

parameters: D, attribute_list, and
Attribute_selection_method. We refer to D as a data
partition. Initially, it is the complete set of training
tuples and their associated class labels. The
parameter attribute_list is a list of attributes
describing the tuples. Attribute_selection_method
specifies a heuristic procedure for selecting the
attribute that “best” discriminates the given tuples
according to class. This procedure employs an
attribute selection measure, such as information
gain or the gini index. Whether the tree is strictly
binary is generally driven by the attribute selection
measure. Some attribute selection measures, such
as the gini index, enforce the resulting tree to be
binary. Others, like information gain, do not, therein
allowing multiway splits.

Fig. 2: Example of Divide and Conquer

Disadvantages of C4.5 Algorithm
´ The run-time complexity of the algorithm

corresponds to the tree depth, which cannot
be larger than the number of attributes. Tree
depth is related to tree size, and thereby to
the number of examples. So, the size of C4.5
trees increases linearly with the number of
examples.

´ C4.5 rules slow for large and noisy datasets
´ Space complexity is very large as we have

to store the values repeatedly in arrays.

Proposed system
Based on the disadvantages of Existing

C4.5 Algorithm, an improved method is proposed:
based on the application of the quick sort on the
database. By applying quick sort on the database,
after first splitting attribute is selected as the root,
will reduce the complexity in finding the next splitting
attribute, so that the efficiency is raised and the

308 Juneja et al., Orient. J. Comp. Sci. & Technol., Vol. 3(2), 305-310 (2010)

memory space is reduced.

The detailed steps of proposed modified algorithm
are as follows:
Algorithm

Generate_decision_tree. Generate a
decision tree from the training tuples of data partition
D.

Input
´ Data partition, D, which is a set of training
tuples and their associated class labels;
´ attribute_list, the set of candidate
attributes;
´ Attribute_selection_method, a procedure
to determine the splitting criterion that “best”
partitions the data tuples into individual classes. This
criterion consists of a splitting_attribute and,
possibly, either a split point or splitting subset.

Output
A decision tree.

Method:
1. create a node N;
2. if tuples in D are all of the same class, C

then
3. return N as a leaf node labeled with the class

C and exit
4. If attribute_list is empty then, return N as a

leaf node labeled with the majority class in
D and exit.

5. If the tuples of the given class are not same,
then, Calculate entropy (information gain) of
the database by the given formula-Info(D) =

pi log2pi

6. Calculate information required for each
attribute, by the formula-

 InfoA(D) = * Info(D)

7. Calculate gain of each attribute:
Gain(A) = Info(D) – InfoA(D)

8. Select the attribute with the maximum gain
and store it in the ‘max’ variable, i.e.

 max = Infogain(A)
9. Label node N with max.

10. After determining the possible outcomes(j)
of the attribute A, we sort the database(D)
on the basis of that attribute to form the
database (Dj).

11. If the attribute A contains discrete value and
multiway splits allowed then, attribute_list ß
attribute_list – attribute(A)

12. For each outcome of the attribute A, if tuples
in (Dj) are all of same class, then return as a
leaf node, else goto step 4.

13. Return the decision tree.

The proposed algorithm has been tested
on a set of data and the same is discussed through
an example given below:
Step 1

First of all, we calculate the expected
information gain needed to classify a tuple in
database D, which is given by:

Info(D) = pi log2pi no. of comparisons

Cal Info(D) = I(9,5) = 0.940
Step 2

Now the amount of information still needed
in order to arrive at the exact classification is
measured -
Calculate Infoage(D) = 5/14 I(2,3) + 4/14 I(4,0) + 5/
14 I(3,2) 14
Step 3

Calculate Infoincome(D) = 4/14 I(2,2) + 6/14
I(4,2) + 4/14 I(3,1) 14
Step 4

Calculate Infostudent(D) = 7/14 I(3,4) + 7/14
I(6,1) 14
Step 5

Calculate Infocredit_rating(D) = 8/14 I(6,2) + 6/
14 I(3,3) 14
Step 6

Calculate Information Gain, i.e., the
difference between the original information
requirement and the new requirement. That is,
Gain(A) = Info(D) – InfoA(D)
Gain(age) = 0.940 – 0.694 = 0.246
Gain(income) = 0.029
Gain(student) = 0.151
Gain(credit_rating) = 0.048

Step 7
On the basis of gain calculated, which is

309Juneja et al., Orient. J. Comp. Sci. & Technol., Vol. 3(2), 305-310 (2010)

maximum of ‘age’, we select ‘age’ as the root. So,
the tree till here becomes-

After applying quick sort method, on the
basis of age, the new database will be:

In case of “<=30” and “>40”, the output is
both YES and NO. So, calculate further selection
attribute on the basis of gain.

Step 8
The gain of student is maximum, followed

by credit_rating. So, the tree is as
Complexity of quick sort = O(n log n)
 = O(14 log 14)
 = 14 * 1.14 = 15.96

Total no. of comparisons required are =
complexity of quick sort + no. of iterations
= 15.96 + 94 H” 110 , while it is 168 in the original
algorithm.

Follows –

<=30 31…40 >40

no yes excellent fair

Advantages of Proposed System
The Proposed Algorithm has the following

advantages
´ In this algorithm, we apply quick sort on the

database after first splitting attribute is
selected as the root. This will reduce the
complexity in finding the next splitting
attribute, so that the efficiency is raised.

´ Calculation of splitting attribute is much easy,
once the root node has been decided.

´ It takes less time as compared to the
previous C4.5 algorithm.

CONCLUSION

This paper presents an analytic evaluation

of the runtime behavior of the C4.5 algorithm which
highlights some efficiency improvements. Based on
the analytic evaluation, I propose a more efficient
version of the algorithm. It improves on C4.5 by
minimizing the problem of space complexity and
time complexity. This new algorithm is an
improvement of C4.5 algorithm, which
comprehensive utilized technologies of several
improved C4.5 algorithm. This algorithm uses quick
sort, so the database we get after the first split is
sorted, due to which the no. of comparisons for
searching the next splitting attribute is much less
as compared to the previous C4.5 algorithm.

So it is a low-cost and efficient method as
compared to existing algorithm.

REFERENCES

1. Ron Kohavi and Ross Quinlan C5.1.3
Decision Tree Discovery Updated October 10
(1999).

2. Efficient C4.5 [classification algorithm]

Ruggieri, S. , Knowledge and Data
Engineering, IEEE Transactions on Volume
14, Issue 2, Mar/Apr 2002

3. Decision tree construction for data mining

310 Juneja et al., Orient. J. Comp. Sci. & Technol., Vol. 3(2), 305-310 (2010)

on grid computing Shu-Tzu Tsai ChaoTung
Yang Dept. of Comput. Sci. & Inf. Eng.,
Tunghai Univ, Taichung, Taiwan;

4. Parallel Formulations of Decision-Tree
Classification Algorithms by Srivastava Han
Kumar , A. Srivastava , E. Han , V. Kumar
, V. Singh Data Mining and Knowledge
Discovery: An International Journal (1998)

5. J. Quinlan. Learning decision tree classifiers.
ACMComputing Surveys (CSUR), 28(1):71–
72 (1996).

6. J.Quinlan. C 4. 5: Programs for Machine
Learning. Morgan Kaufmann (1992).

7. S. Murthy, S. Kasif, and S. Salzberg. A
System for Induction of Oblique Decision
Trees. Arxiv preprint cs.AI/9408103 (1994).

8. Frank, E., Wang, Y., Inglis, S., Holmes, G. &
Witten, I. H., ‘Using model trees for
classification’, Machine Learning 32(1),
63{76 (1998).

9. Freund, Y. & Schapire, R. E., A decision-
theoretic generalization of on-line learning
and an application to boosting, in
‘Proceedings of the Second European
Conference on Computational Learning

Theory’, Springer-Verlag, pp. 23{37. To
appear in Journal of Computer and System
Sciences (1995).

10. Friedman, J., Kohavi, R. & Yun, Y., Lazy
decision trees, in ‘Proceedings of the
Thirteenth National Conference on Artificial
Intelligence’, AAAI Press and the MIT Press,
pp. 717{724 (1996).

11. Kohavi, R. & Kunz, C, Option decision trees
with majority votes, in D. Fisher,ed., ‘Machine
Learning: Proceedings of the Fourteenth
International Conference’, Morgan
Kaufmann Publishers, Inc., pp. 161{169.
Available at http://robotics.stanford.edu/
users/ronnyk (1997).

12. Kohavi, R. & Li, C.-H. Oblivious decision
trees, graphs, and top-down pruning, in C.
S. Mellish, ed., ‘Proceedings of the 14th
International Joint Conference on Artificial
Intelligence’, Morgan Kaufmann, pp.
1071{1077 (1995).

13. Murthy, S. K., Kasif, S. & Salzberg, S, ‘A
system for the induction of oblique decision
trees’, Journal of Ar tificial Intelligence
Research 2,(1), 33 (1994).

