
INTRODUCTION

File system metadata includes directory
organization, file size, block spanning information,
resource allocation, etc. This metadata controls the
structure of a file system and hence maintaining
the integrity of metadata is the key of file system
reliability. Depending upon the type of file system,
metadata is located in several different places and
hence file operations that require updating file
system metadata need to update data located in
these different places, e.g. a file append operation
may require three metadata updates: 1) finding an
unused data block, and marking it as allocated, 2)
adding it to the file’s list of clusters; 3) rewriting the
size of the file. Ideally, all these updates should be
done atomically. However, if a crash or failure
happens in between, the file system is left in an
inconsistent state. It is not possible to make sure
absolutely no data is lost after a system crash1.
However, many studies have managed to keep the
structure of various file systems consistent across
crashes and failures. In this paper we will look at
some most notable approaches that ensure disk
file system reliability.

Offline Check
Many traditional disk file systems, such as

FAT² and ext2³ do not care during file operations to

Oriental Journal of Computer Science & Technology Vol. 3(2), 269-271 (2010)

Some notable reliability techniques for disk file systems

WASIM AHMAD BHAT and S.M.K. QUADRI

Department of Computer Sciences, University of Kashmir, Srinagar (India).

(Received: November 06, 2010; Accepted: December 10, 2010)

ABSTRACT

File system operations include data operations and metadata operations. Data operations act
upon actual user data while metadata operations modify the structure of the file system, like creating,
deleting, or renaming files, directories, etc. During a metadata operation, the system must ensure that
data are written to disk in such a way that the file system can be recovered to a consistent state after
a system crash. In this paper we look at some most notable techniques which ensure reliability of disk
file systems against system crashes and failures.

Key words: Disk file system, reliability techniques, data operations.

keep their structure consistent across crashes.
When a crash occurs, the system does an offline
file system consistency check to identify the
inconsistent structure and possibly rectify it. The
FSCK4 program scans the whole disk and fixes any
inconsistencies it finds. This approach works fine
for small disk volumes, but as file system volumes
are getting larger and larger, the offline time spent
on FSCK becomes intolerable.

Synchronous Write
An in-memory buffer cache is used by

most of the file systems to improve the performance.
In these file systems, when some data needs to be
written, it is first cached in memory, and written back
asynchronously at some later proper time. Because
the order in which the buffers in the cache are written
back is not guaranteed, various reliability issues
could arise when a crash occurs. For example, if a
crash happens when the system is doing a file
append operation, it is possible that an unused
cluster is added to one file’s cluster list, while it is
not marked as allocated. If the system restarts and
resumes work without noticing this, it is likely to
allocate the same cluster again to another file,
causing a joint-cluster inconsistency problem. The
original BSD Fast File System (FFS)5 has used
synchronous write to properly sequence related
metadata updates. For example, it is assured that

270 Bhat & Quadri, Orient. J. Comp. Sci. & Technol., Vol. 3(2), 269-271 (2010)

the cluster is marked allocated before it is added to
the file’s cluster list when doing a file’s appending
operation. In this way, even if a crash occurs
between these operations, only one cluster is lost,
no further corruption of the file system will be
induced, thus eliminating the compulsory offline
FSCK on the next boot.

Soft Updates
In Synchronous Write all metadata

updates are done synchronously, as such file
system operations like file creation and deletion are
forced to proceed at disk speed rather than
processor or memory speed. Since disk IO speed
is much slower than memory, synchronous write
reduces system performance and is its main
drawback. Soft updates6 provide a way to eliminate
most synchronous writes in the FFS, while still keeps
the same level of reliability. The soft updates
approach maintains the dependencies of updated
metadata buffers in memory, and writes them back
based on these dependencies. Because not all
groups of metadata updates have dependencies
between each other, some of these groups may be
merged and reorganized, thus eliminating many
unnecessary disk writes. The main drawback of soft
updates is that it is too complex to understand and
implement.

Logging
Another popular method of improving file

system reliability is using file system log. In log-
based file systems, such as ext37, all metadata
updates of a file operation are first written to the
log and grouped as a transaction, and then
committed to blocks where metadata is located.
When a crash occurs, the system first checks the
file system log, redoing the completed but not
committed transactions and discarding the
incomplete ones. After this process, the file system
structure is again consistent. The KFAT8 file system
also applied this method. As metadata in log-based
file system is written twice, this technique also
suffers from performance problem. Instead of
adding a log to the traditional structure of a file
system, a log-structured file system, such as
Journaling Flash File System 2 (JFFS2)9 is itself a
huge log as a whole. All file updates are just
appended to the log, but need not be committed
for a second time. However, systems using such

log-structured file system suffer from excessively
long boot time. To build the index of the file system’s
current state, the whole volume must be scanned
when it is mounted, which is considered intolerable
for big volumes.

DSW
The Delay Sequential Write (DSW)10

method is similar to synchronous write and soft
updates. It also keeps the order in which the
metadata updates of one file operation are applied
to the storage. This means that it has the same
level of reliability as a file system using synchronous
write or soft updates, i.e. the structure of the file
system is kept consistent across crashes, with the
exception of possibly a few leaked blocks. The
leaked blocks can be reclaimed using a background
process. Meanwhile, neither does the DSW method
need to write the updated buffers synchronously,
nor is it as complicated as soft updates. In fact, the
DSW method is both simple and efficient.

Other Approaches
Transaction-safe FAT (TFAT)11 is a more

reliable version of the FAT file system that uses a
separate backup FAT table that is not updated until
the working copy is back into consistent state after
a transaction is done. It also uses FAT chain
rerouting to protect file content in addition to
metadata. It might be worth mentioning here the
Extended File Allocation File System (exFAT)12 is
very promising for portable digital systems, offering
better scalability, allocation performance, and
reliability and access control than the original FAT
file system. The exFAT uses an approach that is
similar to TFAT to improve its reliability. M. Baker et
al. proposed an alternative approach13 to implement
file system reliability in 1992, by using battery
powered non-volatile memory as the buffer cache.
Since buffers in the cache are not lost even after a
crash, the problem is solved from its root. However,
the need of extra hardware restricted this approach’s
application.

CONCLUSION

In this paper, we discussed the reliability problem
of the disk file systems and presented some well
established and notable techniques which ensure
reliability of disk file systems across system crashes.

271Bhat & Quadri, Orient. J. Comp. Sci. & Technol., Vol. 3(2), 269-271 (2010)

1. Margo I. Seltzer, Gregory R. Ganger, M. Kirk
McKusick, Keith A. Smith, Craig A.N. Soules
and Christopher A. Stein, “Journaling Versus
Soft Updates: Asynchronous Meta-data
Protection in File Systems”, USENIX Annual
Technical Conference (San Diego, CA), 18-
23 (2000).

2. W. A. Bhat and S. M. K. Quadri, “Review of
FAT Data Structure of FAT32 file system”,
Oriental Journal of Computer Science &
Technology, 3,(1) (2009).

3. Bellevue Linux Users Group, “The Linux
Information Project, Ext2fs Definition”, http:/
/www.linfo.org/ext2.html

4. M. K. McKusick, “Fsck - The UNIX File
System Check Program”, In 4.4 BSD System
Manager’s Manual, O’ Reilley & Associates
Inc, (1994).

5. M. K. McKusick, W. N. Joy, S. J. Leffler and
R. S. Fabry, “A Fast File System for UNIX”,
In ACM Transactions of computer Systems,
2(3): (1984).

6. M. K. McKusick and G. R. Ganger, “Soft
Updates: A Technique for Eliminating Most
Synchronous Write in the Fast File system”,
In Proceedings of the FREENIX Track: 1999
USENIX Annual Technical Conference, 1-17
(1999).

7. S. Tweedie, “Journaling the Linux ext2fs

Filesystem”, In LinuxExpo ’98 (1998).
8. M. S. Kwon, S. H. Bae, S. S. Jung, D. Y. Seo,

and C. K. Kim, “KFAT: Log-based
Transactional FAT File system for Embedded
Mobile Systems”, In Proceedings of 2005
US-Korea Conference, ZCTS-142, (2005).

9. D. Woodhouse, “JFFS: The Journaling Flash
File System”, In Ottawa Linux Symposium.
RedHat Inc., (2001).

10. Liang Alei, Liu Kejia, Li Xiaoyong , “FATTY :
A reliable FAT File System”, Proceedings of
the 10th Euromicro Conference on Digital
System Design Architectures, Methods and
Tools, Pages: 390-395, Year of Publication:
(2007).

11. Microsoft Corp, “Transaction-Safe FAT File
System”,http://msdn2.microsoft.c0m/en-us /
library/aa911939.aspx, (2007).

12. Microsoft Corp, “Extended FAT File
System”,http://msdn2.rnicrosoft.com/en-us/
library/aa914353.aspx, (2007).

13. M. Baker, S. Asami, E. Deprit, J. Ousterhout
and M. Seltzer, “Non-Volatile Memory for
Fast, Reliable File Systems”, In Proceedings
of the 5th International Conference on
Architectural Support for Programming
Languages and Operating System
(ASPLOS), 27(9): (1992).

REFERENCES

