
INTRODUCTION

The FAT (File Allocation Table) file system
was developed in the late 1970s and early 1980s
and was the file system supported by the Microsoft®
MS-DOS® operating system1. It was the primary
file system for various operating systems including
DR-DOS, FreeDOS, MS-DOS, OS/2 (v1.1) and
Microsoft Windows (upto Windows Me). FAT was
originally developed for floppy disk drives less than
500K in size. As storage capacity increased, FAT
was enhanced to support large storage media. As
such we have three fully documented FAT file
system types: FAT12, FAT16 and FAT32. exFAT 2 is
the recent compilation of Microsoft® while KFAT 3,
TFAT 4 and FATTY 5 are the reliability enhancements
to the actual design by the same and other
researchers.

Certain standards, ECMA-107 6 and ISO/
IEC 9293 7,8, for FAT design have been made which
include only FAT12 and FAT16 without long filename
support.

As compared to other file systems, the
performance of FAT is poor as it uses simple data
structures, making file operations time-consuming
and inefficient disk space utilization in situations
where many small files are present. But for same

Oriental Journal of Computer Science & Technology Vol. 3(1), 161-164 (2010)

Review of FAT data structure of FAT32 file system

WASIM AHMAD BHAT and S.M.K. QUADRI

Department of Computer Sciences, University of Kashmir, Srinagar (India).

(Received: February 25, 2010; Accepted: April 08, 2010)

ABSTRACT

FAT file system is the most primitive, compatible and simple file system which still sustains in
this era on digital devices, such as mini MP3 players, smart phones, and digital cameras. This file
system is supported by almost all operating systems because of its simplicity and legacy. This paper
presents review of the basic design technique, constraints and formulas of the most important and
building block data structure of FAT32 file system; the FAT data structure.

Keywords: FAT, File Allocation Table, FAT32, File System, Cluster, Sector.

simple design and legacy it is supported by almost
all existing operating systems for personal
computers. This makes it a useful format for solid-
state memory cards and a convenient way to share
data between operating systems.

In today’s world, several portable digital
devices, such as mini MP3 players, smart phones,
and digital cameras are becoming part of our life.
These devices exchange data frequently with
desktop computers. The PC discovers these devices
as standard USB mass storage devices, and
automatically mounts the file system volumes inside
them. This is possible only if the file system used in
the device is supported by the PC’s operating
system. This is why the conventional FAT32 1 file
system which can address large storage media and
is supported by all major desktop operating systems,
is still the most widely used file system in portable
digital devices.

Data Structure Ordering of FAT32 Volume
The following table shows the order of the

data structures that compose a FAT32 disk volume.

Boot Reserved FAT FAT File &
Sector Sectors (Copy 1) (Copy 2) Directory

Sectors

162 Bhat & Quadri, Orient. J. Comp. Sci. & Technol., Vol. 3(1), 161-164 (2010)

A FAT32 file system is composed of four
different sections:
1. The Boot Sector is located at the beginning

of the volume i.e. 0th sector. It includes an
area called BPB (BIOS Parameter Block) that
begins at offset 11 and contains some basic
file system information. The rest of the sector
usually contains the boot loader code.

2. The Reserved sectors immediately follow
Boot Sector. The number of reserved sectors
for the volume including the Boot Sector is
indicated by BPB at offset 14 of Boot Sector.
Typically, the reserved sectors include a File
System Information Sector at Sector 1 and
a Backup Boot Sector at Sector 6 of the
volume.

3. The File Allocation Table is an array of 32-bit
wide entries and spans over a number of
sectors indicated by BPB at offset 36 of Boot
Sector. FAT32 has generally two copies of
FAT data structure for the sake of redundancy
checking disk media while one in case of
FLASH media. Bit 7 of the BPB offset 40 of
Boot Sector indicates whether the FAT is
mirrored or not. This region gives the name
FAT to the file system and the suffix 32.

4. The File and Directory sectors make up rest
of the file system up to the end of volume
where the actual file and directory data is
stored. FAT32 typically hoses the Root
Directory in the first cluster (A cluster is a
fixed number of contiguous sectors, the
number is indicated by BPB at offset 13 of
Boot Sector for the volume) of File &
Directory Sectors and is indicated by the BPB
at offset 44 of Boot sector.

3. FAT Data Structure of FAT32 File System
Volume

All of the FAT file systems were originally
developed for the IBM PC machine architecture,
thus FAT uses little endian format for entries in the
BPB, FATs and File and Directory entries [1]. FAT
data structure is a table which stores the information
about which clusters are used, free or possibly
unusable. In addition to that it stores information
about the chain of clusters that belong to a particular
file. Depending on the type of FAT file system being
used and the size of the volume, cluster sizes vary
and number of contiguous sectors per cluster may
be 1,2,4,8,16,32 or 64 [1]. As memory cost per
capacity is dramatically decreasing every year [9],
the maximum number of clusters have dramatically
increased, and so the number of bits used to identify
each cluster has grown. Thus successive major
versions of the FAT format are named after the
number of table element bits used to address a
cluster: 12, 16, 32 and 64 [2]. In FAT32, FAT entry
is 32 bit wide but only lower 28 bits are used to
address 2^28 clusters. As such FAT32 volume can
be as large as ((2^28) * 64)/2 KB which equals to 8
TB.

3.1. Basic Design Technique
Every file and directory (except Root

Directory) on FAT32 volume has an entry in its
parent directory containing name, attributes, size,
etc. along with the 32-bit wide first cluster number
allocated to it. Corresponding to any cluster number,
FAT entry can have certain permissible values given
below:

FAT32 Cluster Entry Values Description

0x00000000 Is Free Cluster
0x00000001 Reserved value
0x00000002–0x0FFFFFEF Is Used Cluster and value points to next

cluster in the chain allocated to file/directory
0x0FFFFFF0–0x0FFFFFF6 Reserved values
0x0FFFFFF7 Some Bad sector in Cluster, Unusable
0x0FFFFFF8–0x0FFFFFFF Is Last Cluster in file/directory or EOC

(End Of Cluster chain) marker

163Bhat & Quadri, Orient. J. Comp. Sci. & Technol., Vol. 3(1), 161-164 (2010)

Each file/directory may occupy one or
more clusters depending on its size and number of
sectors per cluster. Thus, a file is represented by a
chain of these clusters. However these clusters are
not necessarily stored adjacent to one another on
the disk’s surface but are often instead fragmented
throughout the file & directory sectors.

Let’s suppose two files, say MYFILE1.TXT
and MYFILE2.TXT are currently residing on a FAT32
volume such that the former is fragmented and 3
clusters long while the later is not fragmented and

two clusters long as shown in figure 1.

MYFILE1.TXT has first cluster allocated
0x00000029, FAT contents against that cluster
shows another cluster 0x0000002A, then
0x0000002D whose FAT contents show that this
cluster is the last cluster in chain. Similarly, for
MYFILE2.TXT the first cluster allocated is
0x0000002B whose FAT contents point to next
cluster in chain, 0x00000002C, which is the last
cluster in chain as pointed by its FAT content.

Fig. 1. Snapshot of FAT data structure for FAT32 Volume

Constraints
A FAT32 FAT entry actually uses low 28-

bits to address clusters. The high 4 bits of a FAT32
FAT entry are reserved and are only changed when
the volume is formatted, at which time the whole
32-bit FAT entry should be zeroed, including the
high 4 bits. This means all of these 32-bit cluster
entry values: 0xA0000000, 0xB0000000, and
0x00000000 indicate a free cluster as the low 28
bits are set to 0.

Suppose a 32-bit free cluster value is
currently 0xA0000000 and we want to mark this
cluster as bad by storing the value 0x0FFFFFF7 in
it. Then the 32-bit entry should contain the value
0xAFFFFFF7, because we must preserve the high
4 bits when we write in the 0x0FFFFFF7 bad cluster
mark.

Because the number of bytes per sector
as indicated by BPB at offset 11 of Boot sector is
always divisible by 4, a FAT32 FAT entry never spans
over a sector boundary.

The first two entries in FAT store special values:
• The first entry contains a copy of BPB at

offset 21 of Boot Sector which is 8 bit long
which indicates the type of storage media.
The remaining 20 bits between high 4 and
low 8 of this entry are set to 1.

• The second entry stores the EOC marker.
The high order two bits of this entry are
sometimes, used for dir ty volume
management: high order bit if set to 1
indicates that last shutdown was clean
otherwise abnormal. The next highest bit if
set to 1 indicates that during the previous
mount no disk I/O errors were detected10 else
there were.

Because the first two FAT entries store
special values, there is no cluster 0 or 1. The first
addressable cluster in FAT32 FAT data structure is
cluster 2, which is the reason why BPB value at
offset 44 of Boot Sector which indicates the Root
Directory cluster number can not be less than 2
and is usually 2, i.e., the Root Directory is at the
start of file/directory region.

164 Bhat & Quadri, Orient. J. Comp. Sci. & Technol., Vol. 3(1), 161-164 (2010)

3.3. Formulas
All the sector numbers computed here are

relative to the first sector of the FAT32 volume, the
Boot sector and does not necessarily map directly
onto the drive, because sector 0 of the volume is
not necessarily sector 0 of the drive due to
partitioning and the code snippets are in C-
Programming language.

The start of the file/directory region, the
first sector of cluster 2, is computed as follows:

FirstDataSector = BPB_ResvdSecCnt +
(BPB_NumFATs * FATSz);

BPB_ResvdSecCnt is the number of reserved
sectors at offset 14 of Boot sector

BPB_NumFATs is the count of FAT data
structures at offset 16 of Boot Sector

FATSz is the count of sectors occupied by one
FAT copy at offset 36 of Boot Sector

Given any valid data cluster number N, the
sector number of the first sector of that cluster is
computed as follows:

FirstSectorofCluster = ((N – 2) *
BPB_SecPerClus) + FirstDataSector;

BPB_SecPerClus is the count of sectors per
cluster at offset 13 of Boot Sector

Given any valid data cluster number N, the
FAT sector number which contains its entry and the
offset in that FAT sector is computed as follows:

FATOffset = N * 4;
ThisFATSecNum = BPB_ResvdSecCnt +

(FATOffset / BPB_BytsPerSec);
ThisFATEntOffset = FATOffset %

BPB_BytsPerSec;
BPB_BytsPerSec is the count of bytes per sector

at offset 11 of Boot Sector

The FAT sector calculated above belongs
to first copy of FAT; in case the second copy is to
be used the FAT sector is computed as follows:

ThisFATSecNum = BPB_ResvdSecCnt +
(FATOffset / BPB_BytsPerSec)+ FATSz;

Conclusion and Future Work
In this paper we discussed the basic &

simple design technique for FAT data structure in
FAT32 and reviewed the constraints and formulas
necessary to handle the FAT32 FAT data structure.
Due to its simplicity in design it is widely supported
by small digital devices to desktop operating
systems. Several things have been left like reliability
issues and compatibility problems of FAT data
structure, optimized algorithms, etc.

1. Microsoft Corporation, “FAT32 File System
Specification”, http://microsoft.com/whdc/
system/platform/firmware/fatgen.mspx, 2000

2. Microsoft Corporation, “Extended FAT File
System”, http://msdn2.microsoft.com/en-us/
library/aa914353.aspx, 2007

3. M. S. Kwon, S. H. Bae, S. S. Jung, D. Y. Seo,
and C. K. Kim, “KFAT: Log-based
Transactional FAT File system for Embedded
Mobile Systems”, In Proceedings of 2005
US-Korea Conference, ZCTS-142, 2005

4. Microsoft Corporation, “Transaction-Safe FAT
File System”, http://msdn2.microsoft.c0m/
en-us/library/aa911939.aspx, 2007

5. Liang Alei, Liu Kejia, Li Xiaoyong , “FATTY :
A reliable FAT File System”, Proceedings of

the 10th Euromicro Conference on Digital
System Design Architectures, Methods and
Tools, Pages: 390-395, 2007.

6. Standards - Ecma-107
7. Standards - ISO 9293:1987
8. Standards - ISO/IEC 9293:1994
9. Michael D. Dahlin, “The Impact of Trends in

Technology on File System Design”
University of California, Berkeley, January 23,
1996.

10. Andries E. Brouwer, The FAT file system”,
2002-09-20 http://www.win.tue.nl/~aeb/linux/
fs/fat/fat-1.html

11. “Microsoft MS-DOS Programmer’s
Reference: version 5.0.”, Microsoft press.
1991.

REFERENCES

