
INTRODUCTION

Using object level run time metrics to study
coupling between objects” basically tells us how to
identify objects from the same class that exhibit non
uniform coupling behavior when measures
dynamically. Coupling was first introduced in the
context of the structural development techniques.
Coupling is defined as, “the measure of the strength
of association established by a connection from one
module to another”. An object of a class is coupled
to another if methods of one class use methods or
instance variables defined by the other.

If the coupling between modules is strong,
i.e., the more inter-related they are, it is more difficult
to understand, change, and correct these modules
and thus making the software system more complex
.A good software system should exhibit low coupling
between its units.

Coupling measurement has traditionally
been performed using static code analysis, because

Oriental Journal of Computer Science & Technology Vol. 3(1), 139-144 (2010)

Static analysis and run-time coupling metrics

MANDEEP KAUR, PARUL BATRA and AKHIL KHARE

Department of Information Technology,
Bharati Vidyapeeth College of Engineering, Pune - 411 043, (India).

(Received: March 08, 2010; Accepted: April 30, 2010)

ABSTRACT

The relationships between coupling and external quality factors of object-oriented software[1]
have been studied extensively for the past few years. For example, a clear empirical relationship
between class-level coupling and the fault-proneness of the classes have been identified by several
studies. A number of statistical techniques, principally Agglomerative Hierarchical Clustering (AHC)
analysis, Byte Code Instrumentation are used to facilitate the identification of such objects. Dynamic
coupling indicates the strength of association established by a connection from one software module
to another at runtime. Despite the rich body of research in the field of software measurement, dynamic
coupling measurement for Aspect Oriented software is still missing. A dynamic coupling measurement
framework for AspectJ[10] programs is presented in this paper. The framework consists of a suite of
measures for both method-level and class-level coupling relations. This paper also presents a new
approach towards static analysis, in particular class analysis to the computation of dynamic coupling
measures and is designed to work on incomplete programs.

Keywords: RTA, CHA, BCEL (Binary Code Engineering Library),
JVM (Java Virtual Machine), Cluster Analysis.

most of the existing work was done on non-object
oriented code and dynamic code analysis was more
expensive and complex to perform. For modern
software systems, however, this focus on static
analysis can be problematic because although
dynamic binding existed before the advent of object-
orientation, its usage has increased significantly in
the last decade.

Various coupling measures are defined
based on a static analysis of class code, and the
ability of the CBO metric2 to accurately predict the
actual amount of coupling between objects is as
yet unproven. CBO for a class is a count of the
number of other classes to which it is coupled.

Statically analyzing code helps in
monitoring whether it meets uniform expectations
around security, reliability, performance, and
maintainability3,4,5. Done properly, this static code
analysis provides the basis for producing solid code
by exposing structural errors and preventing entire
classes of errors.

140 Kaur et al., Orient. J. Comp. Sci. & Technol., Vol. 3(1), 139-144 (2010)

Traditional object-or iented coupling
measures11,12 fail to properly anticipate the quality
attributes of classes and underestimate their
complexity as they do not account for polymorphic
interactions.

Arisholm et al. 6 define a certain class of
dynamic coupling measures that account for
polymorphism to deal with the problem of traditional
object oriented coupling measures.

Dynamic Coupling Measures
Dynamic coupling measures are being

collected through dynamic analyses which show that
these measures are better predictors of quality
attributes and better indices of complexity than
traditional coupling measures.

Dynamic coupling measures are based on two
well known and simple class analyses:
Class Hierarchy Analysis (CHA) and Rapid Type
Analysis (RTA)8.

Class Hierarchy Analysis (CHA) is the simplest
form of class analysis. It combines the statically
declared type of an object and the class hierarchy

of the program to determine the set of possible
targets of a virtual function call.

Rapid Type Analysis (RTA) improves on CHA by
taking into account what classes are taken into
account in the program.A call graph is generated in
the beginning by performing Class Hierarchy
Analysis. Then the information about instantiated
classes is used to further reduce the executable
virtual functions, thereby reducing the size of the
call graph.

Metrics Data Collection Tool
A number of methods are available for

collecting run-time information from Java programs.
Instrumenting a Java Virtual Machine, such as
JDissect, is one. A Java Virtual Machine (JVM) is
a set of computer software programs and data
structures that use a virtual machine model for the
execution of other computer programs and scripts.
The model used by a JVM accepts a form of
computer intermediate language commonly referred
to as Java bytecode.

Jdissect collects data from running Java
programs to calculate dynamic coupling.

Fig. 1: JDissect

JVMPI : Java VM Profiling Interface, collecting most
of the data
JVMDI : Java VM Debugging Interface, to obtain
unique line number
libjdissect.so : a library of data collection routines
Scalpel : tagging to limit the scope (use case,
scenario, subsystem, …)
Mcalc : read the data into data structure and analyze
to obtain measures
Filter.conf : configuration file

Another technique is bytecode
instrumentation in which modification of the class
file content is done in order to acquire run-time
information. The approach adds the least overhead
to the execution of the program providing object-
level accuracy, which is essential for analysis.

The BCEL (Byte Code Engineering
Library) - an API can be used to analyze, create,
and manipulate (binary) Java class files. All the

141Kaur et al., Orient. J. Comp. Sci. & Technol., Vol. 3(1), 139-144 (2010)

symbolic information of the given class, such as
methods, fields and byte code instructions are in
BCEL objects which represent all set of Classes.
These objects can be read from an existing file, be
transformed by a program and dumped to a file
again.

The Case For Static Analysis
Dynamic coupling measures were

captures by Arisholm et al.3 through dynamic
analysis; however, it was being observed that

dynamic analysis has drawbacks. First, since it
requires multiple inputs for the program for multiple
executions so it is relatively slow. Second, the
engineering task of building an instrumentation
framework is relatively complex. Third, complete
program is always required by dynamic analysis.
Fourth, the results obtained may be incomplete as
they are based on particular runs with particular
inputs. For example, let there are two clients of the
Bridge structure7 in Fig. 2, one that instantiates A1
with Imp1 and one that

Fig. 2: Bridge structure

Instantiates A1 with Imp2. Running the
two clients will count dynamic couplings 0A1,Imp1
0 and 0A1,Imp2 0 as due to call imp.DevM(). Thus,
dynamic analysis will neglect four valid couplings.
One would need at least six clients, and six runs, in
order to capture correctly all possible dynamic
couplings due to this call.

Runtime Coupling Between Objects (RCBO)
Run-time Coupling between Objects

(RCBO) 2 is defined as the number of classes that
are accessed by another class at run-time. This
measure will be some function of the static CBO
measure, as this measure determines the classes
that can be theoretically accessed at run-time. This
is a coarse-grained measure which will assess
class-class coupling at the object level.

Advantages:
• This metric is a good predictor of the

maintainability, fault proneness , testability,
change proneness and reusability of a
software design.

Disadvantages:
• The ability of the metric to accurately predict

the actual amount of coupling between the
objects is as yet unproven.

• It is defined on static analysis, thus cannot
capture all the dimensions of object-level
coupling, as features of object-oriented
programming such as polymorphism,
dynamic binding and inheritance render CBO
imprecise in evaluating the run-time behavior
of an application.

142 Kaur et al., Orient. J. Comp. Sci. & Technol., Vol. 3(1), 139-144 (2010)

Run-time object level coupling basically
measures the level of dependencies between
objects in a system.

Run-time class level coupling measures
the level of dependencies between the classes that
implement the methods or variables of the caller
object and the receiver object. The class of the
object sending or receiving a message may be
different from the class implementing the
corresponding method due to the impact of
inheritance.

Statistical Analysis
Coefficient of Variation (Cv)

The coefficient of variance, Cv is
calculated for the RCBO results to determine how
the RCBO values varies across the objects of a
class. The relative scatter in data with respect to
the mean is measured by Cv and is calculated by
dividing the mean by the standard deviation. It has
no units and can be expressed as a simple decimal
value or reported as a percentage value.

When the Cv is less, the data scatter relative to the
mean is small.
When the Cv is large, compared to the mean the
amount of variation is large.

Cv = σ/µ * 100 (1)

Equation 1 defines the coefficient of variation as a
percentage.
where
 µ is the mean
 σ is the standard deviation.

If Cv =0 then the null hypothesis is
accepted, Ho, as all objects of this classes would
be accessing the same variables. However, if there
was variation in the CBO values, Cv > 0, this would
lead us to reject Ho and accept Hi, as the objects
would be behaving differently at run-time from the
point of view of coupling.

Cluster Analysis
The term cluster analysis (first used by

Tryon, 1939)9 encompasses a number of
different algorithms and methods for grouping
objects of similar kind into respective categories and

can be used to discover structures in data without
providing an explanation/interpretation. In other
words cluster analysis is an exploratory data
analysis tool which aims at sorting different objects
into groups in a way that the degree of association
between two objects is maximal if they belong to
the same group and minimal otherwise.

The Noc value is calculated using cluster
analysis. It helps reveal associations and structures
of data in a domain set. A measure of proximity or
similarity/dissimilarity determines groups from a
complex data set. A wide variety of such measures
exist but no consensus prevails over which is
superior. For the purpose of this analysis, two widely
used dissimilarity measures, Pearson dissimilarity
and Euclidean distance, were chosen. The analysis
is conducted using these two different measures in
order to verify the results.

Equation 2 defines the Pearson Dissimilarity,
where µx and µy are the means of the first and
second sets of data
& σx and σy are the standard deviations of the
first and second sets of data.

d(x,y)= 1/n(ΣI xi yi - µxµy) (2)
σxσy

Equation 3 defines Euclidean distance-
This is probably the most commonly chosen type
of distance. It simply is the geometric distance in
the multidimensional space. It is computed as:

d(x,y) = {Σi (xi - yi)
2 }½ (3)

The next step is an agglomerative
hierarchical clustering (AHC) algorithm which
provides the output related to the means of
identifying coupling clusters. AHC algorithms start
with singleton clusters, one for each entity. Similar
pair of clusters are merged, one pair at a time, until
a single cluster remains.

Throughout the cluster analysis, there is
a symmetric matrix of dissimilarities maintained
between the clusters. Once two clusters have been
merged, it is necessary to generate the dissimilarity
between the new cluster and every other cluster.
The unweighted pair group average linkage

143Kaur et al., Orient. J. Comp. Sci. & Technol., Vol. 3(1), 139-144 (2010)

algorithm was employed here as it is theoretically
the best method to use and the most likely to mimic
correctly input groupings.

The output of AHC is usually represented
in a special type of tree structure called a
dendrogram, as illustrated by Figure 3. Each branch
of the tree represents a cluster and the cutting line
is a line drawn horizontally across the dendrogram

Fig. 3: Dendrogram:
At the cutting line there are two clusters

at a given dissimilarity level to determine the number
of clusters by constructing a histogram of node
levels to find where the increase in dissimilarity is
strongest, as then we have reached a level where
we are grouping groups that are already
homogenous. The cutting line is selected before this
level is reached.

In order to accept H0 we would expect
objects from the same class to group together and
occupy the same cluster, therefore expecting values
of NOC to be 1. The formation of a number of different
clusters, where NOC > 1, would lead us to reject H0

and accept H1.

DISCUSSION

The main contributions of the work are the
following: First, a static analysis framework was
proposed for the computation of dynamic coupling
measures for str ictly-typed object-or iented
languages such as Java; the analysis is
parameterized by a class analysis and works on
incomplete programs.

Secondly, the study is done to investigate
the hypothesis that from the point of view of coupling
objects of a class behaves differently at run-time
and for this a number of run-time object-level metrics
are being used based on the static CBO measure.

ACKNOWLEDGEMENTS

The authors would like to thank Prof. A.
Khare for providing the component data, and his
guidance which helped to improve this paper.

1. L.C. Briand, J.W. Daly, and J.K. Wust. A
unified framework for coupling measurement
in object-oriented systems. IEEE
Transactions on Software Engineering,
25(1):91–121, (1999).

2. S.R. Chidamber and C.F. Kemerer. A metrics
suite for object-oriented design. IEEE
Transactions on Software Engineering, 20(6):
467–493, (1994).

REFERENCES

3. V.R. Basili, L.C. Briand, and W.L. Melo. A
validation of object-oriented design metrics
as quality indicators. IEEE Transactions on
Software Engineering, 22(10): 751–761,
(1996).

4. L.C. Briand. Empirical investigations of quality
factors in object-oriented software. In
Empirical Studies of Software Engineering,
Ottawa, Canada, (1999).

144 Kaur et al., Orient. J. Comp. Sci. & Technol., Vol. 3(1), 139-144 (2010)

5. J. Eder, G. Kappel, and M. Schrefl. Coupling
and cohesion in object–oriented systems.
Technical Report 2/93, Department of
Information Systems, University of Linz, Linz,
Austria, (1993).

6. E. Arisholm. Dynamic coupling measurement
for object-or iented software. In IEEE
METRICS, pgs 33–42, (2002).

7. E. Gamma, R. Helm, R. Johnson, and J.
Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software.
Addison-Wesley, (1995).

8. D. Bacon and P. Sweeney. Fast static analysis
of C++ vir tual function calls. In ACM
Conference on Object-Oriented
Programming Systems, Languages, and
Applications, pgs 324–341, (1996).

9. S. Phattarsukol and P. Muenchaisr i.
Identifying candidate objects using
hierarchical clustering analysis. In 8th Asia-
Pacific Software Engineering Conference,
pages 381–389, (2001).

10. AspectJ. http://eclipse.org/aspectj/
11. L. C. Briand, P. T. Devanbu, and W. L. Melo.

An investigation into coupling measures for
C++. In ACM/IEEE International Conference
on Software Engineering, pgs 412–421,
(1997).

12. S. Chidamber and C. F. Kemerer. Towards a
metrics suite for object oriented design.In
ACM Conference on Object-Oriented
Programming Systems, Languages, and
Applications, pgs 197–211, (1991).

