
INTRODUCTION

Software Testing is the process of
executing a program with the intent of finding
errors1,2. Testing is focused only on finding faults.3

advocates that the primary goal of testing should
be to measure the dependability of tested software.
Effective software testing will contribute to the
delivery of reliable and quality oriented product,
more satisfied user, lower maintenance and more
correct and reliable results. One surprising thing
about programs is not that they often have bugs,
but that they have so many bugs. As the number of
bugs assumed in software is decreased, the
effectiveness of testing will be greatly enhanced.
Due to large number of testing limitations like
Exhaustive (total) testing is impossible, compromise
between thoroughness, time and budget, it is
impossible to be sure that we have removed each
and every bug in the program. An effective testing
technique will maximize the number of bugs founds
during the test effort. We always want to choose a
testing technique that will accomplish this goal while
consuming less resources and time. To choose an
effective testing technique we need to place
software testing techniques onto a measurement
scale.

Oriental Journal of Computer Science & Technology Vol. 3(1), 109-113 (2010)

Effectiveness of software testing techniques on a
measurement scale

SHEIKH UMAR FAROOQ and S.M.K. QUADRI

Department of Computer Sciences, University of Kashmir, Srinagar (India).

(Received: April 12, 2010; Accepted: June 04, 2010)

ABSTRACT

Testing remains the truly effective means to assure the quality of a software system of non-
trivial complexity. An important aspect of test planning is measuring test effectiveness. To make testing
more successful we need to choose effective testing techniques. To compare testing techniques we
need to place software testing techniques on a measurement scale which can define the relative
merits of the existing testing techniques, but due to differences in software’s and its allied parameters
this task seems to be complex, if not impossible

Keywords: Software Testing, Testing Techniques, Measurement Scales, Effectiveness.

Testing effectiveness
Test effectiveness is a measure of bug

finding ability of the testing technique. Testing
effectiveness can be measured by dividing the
number of faults found in a given test by total number
of faults (including those found after test)4.

Test Effectiveness = Errors reported by Testers /
Total Errors reported

Where Total Errors = Tester reported + User
reported Errors

For instance, a testing technique A finds
30 errors, testing technique B finds 40 errors and
the total testing process finds 100 errors. Then as
per the given definition for measurement of test
effectiveness, testing technique A was 30% effective
and testing technique B was 40% effective.
However, if the system is delivered after the total of
100 errors were found in whole testing process, and
50 additional errors were uncovered during the initial
operation of the software for some specified time
then contribution of testing technique A in finding
errors is 30 out of 150 errors (20%) while that of
testing technique B is 40 out of 150(27% appox.).

110 Farooq & Quadri, Orient. J. Comp. Sci. & Technol., Vol. 3(1), 109-113 (2010)

Test effectiveness is only concerned with
finding bugs and is not concerned with whether
these bugs are ever fixed5. Test effectiveness only
measures the percentage of bugs that the test effort
found. Some bugs will be found by both the testers
and the users. They are counted only once. The
more effective the testing is in finding those defects,
the fewer will escape into operation.

This approach of evaluating the impact of
a particular testing technique can be adjusted in
several ways. For example, failures can be assigned
a severity level, and test effectiveness can be
calculated by a level. In fact the number of errors
found in test effort is not meaningful as a measure
until we combine it with the severity of errors, type
of errors found and so on. In this way, we can say
testing technique A might be 50% effective at finding
faults that cause critical failures, but 80% effective
at finding faults that cause minor failures.

Effectiveness of testing is allied to several
parameters
• Testing technique.
• Software type.
• Error detection effectiveness (detection of

most errors).
• Error detection cost (#errors/effort)
• Error type (Class of errors found: Critical,

Serious, Medium and Low)
• Tester’s experience etc.

Measurement Scales
Questions that are frequently asked

regarding software testing effectiveness are: Which
techniques are more valuable? Which are easy to
apply? Which find genuine faults? These questions
can only be answered when we can place software
testing techniques on a scale of measurement.

If something cannot be measured, it can
not be managed or improved. The arrangement of
acceptable changes defines the measurement level
of a scale. Usually, the narrower the arrangement
of acceptable changes, the smaller the number of
scales, and the more informative the scale. Five
measurement levels are generally used in
Measurement Theory. These Scales are below
explained from the least to the most informative
one.

Nominal Scale
A scale is a nominal one if it divides the

set of entities into categories, with no particular
ordering among them. For instance, if the attribute
of interest is gender, subject (population) under
consideration can be classified as males and
females. The specific values of the measures do
not convey any particular information, other than
the fact that they are different, so they can be used
as labels for the different classes. In spite of being
the least informative in the measurement scale
hierarchy, Nominal Scale may provide important
information. The key requirements for the categories
in nominal scale are jointly exhaustive and mutually
exhaustive6.

Ordinal Scale
A scale is an ordinal one if it divides the

set of entities into categories that are ordered
according to some order. For instance, we may
classify students according to their grades: grade
A, grade B and grade C. The ordinal measurement
is more informative than nominal Scale in
measurement hierarchy. It not only groups subjects
into categories, but also orders the categories
according to some par ticular order. The
arrangement of acceptable changes is the set of
strictly monotonic functions i.e., those functions that
is consistently increasing and never decreasing or
consistently decreasing and never increasing. Two
important properties of ordinal scale are
• Asymmetric (if A > B is true, then B > A is

false), and
• Transitive (if A>B and B>C then A>C)6.

Interval Scale
In an interval scale, the exact difference

between two values is the basis for meaningful
statements. For instance, weight of 50, 60 and 70
kilograms differ from each other by 10 kilograms.
The difference (the interval) between 10 and 20,
40 and 50, and 70 and 80 is the same, but we cannot
say that an 80 kilograms entity is ten times heavier
than 8 kilogram entity. The arrangement of
acceptable changes is positive linear (changes
linearly). Interval scale works regardless of the origin
of units we adopt and the unit used i.e.; we can
always change the origin of the measure and the
unit of measure. Arithmetic addition and subtraction
are supported on interval scale data.

111Farooq & Quadri, Orient. J. Comp. Sci. & Technol., Vol. 3(1), 109-113 (2010)

Ratio Scale
In a ratio scale, contrary to interval scale,

there is an absolute and non arbitrary zero point6.
A ratio scale allows the definition of meaningful
statements of the kind “twice as much” on the single
values of the measure. For instance, I am twice as
tall as you. The arrangement of acceptable changes
is proportional .We have to necessarily choose the
reference origin of reference non arbitrarily which
is fixed and its value is 0 (zero). We may change
the unit in this scale too without changing the
meaning of statements. For instance, when
measuring the height of entities, we can use foots,
inches, centimeters, etc. Apart from addition and
subtraction, multiplication and division are also
supported on ratio scale data.

Absolute Scale
Absolute scale is the most informative in

the measurement scale hierarchy. In absolute scale,
measurement is done by counting method. For
instance, you have four testing books; I have only
one .There is only one acceptable change, i.e., the
identity change. The unit of measurement is fixed.
This scale is seldom used in practice.

Measurement scales are hierarchal, and
each level scale possesses all the properties of
lower scales as shown below. Powerful analysis can
be applied to data with more informative scale of
measurement.

Measurement Scale Hierarchy

Testing Techniques on a measurement Scale
Now the question remains which technique

among existing techniques is effective with respect
to one another? To do so we need to place these
testing techniques onto a scale of measurement
aforementioned so that we can opt for those testing
technique which are more effective to produce
reliable and quality products. Although a large
number of software testing techniques have been
proposed, we are basically ignorant of their
respective powers. There is still not adequate proof
to indicate which of these techniques are effective.
It is difficult to perform meaningful comparisons of
the effectiveness of testing techniques. We need to
know how much effort is involved in carrying out

each testing technique, how many faults they are
likely to catch, of what kind and so on. Indeed it can
be said that software testing should do this if only
to be categorized within software engineering
properly. One way to solve this problem is to place
software testing techniques on a measurement
scale.

For instance, if we have to choose the
more effective testing technique between A and B.
Occasionally we can create an incomplete ordering
of testing techniques, stating that A will achieve a
high level of coverage than B 7. It should be noted
that, such incomplete ordering are unable to say
anything how much more coverage is accomplished

112 Farooq & Quadri, Orient. J. Comp. Sci. & Technol., Vol. 3(1), 109-113 (2010)

by one testing technique over another, and very
often testing techniques are placed at the same
level because we are not able to distinguish between
their relative coverage abilities. Sometimes we are
even not able to place A and B in incomplete
ordering that we cannot say anything about the
relative coverage merits of the techniques. Even if
one will argue that his work has revealed that a
particular testing technique is more effective, that
information cannot be appropriately established as
result differs for various parameters (software type,
complexity) for the same testing techniques. Many
people like (Basili and Selby8, Lauterbach and
Randell9, Howden 10, Girgis and Woodward11 and
Lesnaik and Betly12) have indeed worked a lot in
this direction but their works unfortunately have a
lot of contradiction in terms of their results and the
types of parameters they have used. Even if there
were no contradictions, still we can not place testing
techniques on a measurement scale which can tell
us about the relative effectiveness of testing
techniques (at least Ordinal) because of the
difference between parameters they have taken into
consideration and the results also, do not reveal
much information.

At times incomplete orderings can be
useful, however, they only represent theoretical
comparisons of the level of thoroughness with which
a testing technique may test a program but they do
not perfectly describe the ability of testing technique
to find faults within a program and, therefore, are
of little use to the software testing team. Sometimes
even that incomplete ordering creates chaos
because sometimes a stronger technique in that
incomplete ordering will fail to locate a fault revealed
by a much weaker technique.

For Instance: Consider the below example
if (condition1 && (condition2 || fun()))

statement1;
else
statement2;

Code Coverage could consider that the
above control structure is completely exercised
without a call to fun. The test expression is true
when condition1 is true and condition2 is true, and
the test expression is false when condition1 is false.
In this case, the short-circuit operators preclude a

call to fun. These type of errors can be noticed
directly by a software developer or it can be found
during a code reading (a much weaker testing
technique), but the decision coverage report shows
100 percent coverage. If a manager sees 100
percent coverage, he or she may get a false sense
of security, decide that testing is complete, and
release the buggy code into production. Admittedly
above quoted example is trivial one and these kinds
of things increase with increasing size of program.

Most established measures look at the
simplest building blocks of the program (lines of
code) and the flow of control from one line to the
next. Many bugs will not be detected even if there
is complete line coverage, complete branch
coverage, or even if there were complete path
coverage. Using convenient measures and then
ignoring everything else which is more subtle or
difficult to measure can leave many bugs in the
program undetected. [13] in his work shows the
importance of using different testing techniques to
dig out different kinds of errors. It is just not sufficient
to rely on a single method for catching all errors or
problems in a program.

There is no general scale of software
testing techniques. Everybody classifies or places
testing techniques in some order of effectiveness
according to the empirical results they obtain on
some software. Since we are not able to say
anything about the relative merits of the available
testing techniques (other than incomplete
orderings); software testing techniques can only be
placed on a nominal scale.

Conclusion and Future work
Presently we are ignorant about the

relative ordering of software testing techniques and
if we are to make software testing more effective
then we need to place existing software testing
techniques at least on an ordinal scale. To do so we
need to carry out experimentation on large scale
but that needs to in a way that can be compared so
that we can put testing techniques on a scale that
will have no contradictions. For that we also need
to establish common and standard parameters so
that there are little variations in experimentation
goals.

113Farooq & Quadri, Orient. J. Comp. Sci. & Technol., Vol. 3(1), 109-113 (2010)

1. Myers, Glenford J., The art of software
testing, Publication info: New York: Wiley,
c1979. ISBN: 0471043281 Physical
description: xi, 177 p.: ill. ; 24 cm.

2. Hetzel, William C. The Complete Guide to
Software Testing, 2nd ed. Publication info:
Wellesley, Mass.: QED Information Sciences,
1988. ISBN: 0894352423.Physical
description: ix, 280 p.: ill; 24 cm.

3. J.B. Good Enough and S. L. Gerhart, “Toward
a Theory of Test Data Selection,” IEEE
Transactions on Software Engineering, June
1975, pp. 156-173

4. Graham, Dorothy R.(1996b).”Measuring the
effectiveness & efficiency of testing.”In
proceedings of software testing” 96 (Escape
Champerret, Paris, France) (June)

5. Marnei L. Hutcheson, “Software Testing
Fundamentals: Methods and Metrics” WILEY
Pub.

6. Stephen H. Kan, “Metrics and Models In
Software Quality Engineering”, PEARSON

7. Simein C. Ntafos. A Comparision of some
structural testing techniques. IEEE
Transactions on software Engineering,

REFERENCES

14(6):868-874, June 1998
8. Victor R. Basili and Richard W. Selby

comparing the effectiveness of the software
testing strategies,IEEE transactions on
software engineering. SE-13(12);1278-1296,
December 1987.

9. L. Lauterbach and W. Randell experimental
evaluation of six test techniques. In proc.
Compass 89, page 36-41, ACM Press, 1987.

10. William E. Howden. An evaluator of
effectiveness of symbotic testing.Software-
practice & experience, 8:381-397, 1982.

11. M.R. Girgis & M.R. Woodward. An
experimental comparision of the error
exposing ability of program testing criteria.
In proc. Workshop on software testing. 64-
73.IEEE, July 1986.

12. A.M Lesniak-Betley. Audit of statement
analysis methodology. In proc. 3rd Annual
International Phoenix conference on
computers & communications, pages 174-
180, march 1984.

13. Olsen, Neil(1993) “The software rush hour”
IEEE software, 10(50 (September): 29-37.

