
INTRODUCTION

Here the two methods TCP-WCPR old and
TCP CPR is compared. In this paper we proposed
and evaluated the performance of TCP-CPR, a
variant of TCP that is specifically designed to handle
constant rearranging of packets (both data and
acknowledgment packets). Our results show that
TCP-CPR is able to achieve high throughput when
packets are rearranged and yet is fair to standard
TCP implementations, exhibiting similar
performance when packets are delivered in order.
From a computational view-point, TCP-CPR is more
demanding than TCP WCPR. Because TCP-CPR
does not rely on duplicate acknowledgments, packet
reordering (including out-or-order
acknowledgments) has no effect on TCP-CPR’s
performance. This packet loss is detected by
sender’s retransmission timeout (RTO) expiring that
is sender has to set the threshold time after sending
the packets and waiting for acknowledgement of
each packet. If the elapsed time of

Oriental Journal of Computer Science & Technology Vol. 3(1), 95-102 (2010)

Packet loss detection using CPR and
WCPR in diverse platforms

ANURAG LAL¹ and VIVEK DUBEY²

¹Computer Science & Engineering, CIT, Rajnandgaon, (India).
²Computer Science & Engineering, SSCET , Bhilai (India).

(Received: April 23, 2010; Accepted: May 17, 2010)

ABSTRACT

In this paper loss of packets in TCP is detected using two diverse methods CPR (Constant
Packet Re-arranging) and WCPR (Without Constant Packet Re-arranging) in diverse platforms. This
paper proposes a new version of the TCP which gives the high throughput when the packet rearranging
occurs and in another case if the packet rearranging is not occurs then in that case also it is friendly to
other version of the TCP. The key feature of Constant packet rearranging is that duplicate ACKs are not
used as an indication of packet loss. Instead the timer is used to detect the packet loss From a
computational view-point, CPR is more demanding than WCPR. Because CPR does not rely on duplicate
acknowledgments, packet rearranging (including out-or-order acknowledgments) has no effect on CPR
performance.

Keywords: CPR, WCPR, congestion control, packet rearranging.

acknowledgement exceeds the threshold time, the
sender can assume the packet is lost and resend
the corresponding packets. It increase the
throughput, load balancing, and security; protocols
that provide diverseiated services and traffic
engineering approaches. The main idea behind
retransmit packet this is to improve the performance
of TCP throughput by avoiding sender to timeout.
Using fast retransmit can continuously improve the
TCP’s performance in the presence of irregular
rearranging but it still operates under the assumption
of that out-of-order packet which indicate the packet
loss and which leads to congestion. As a result its
performance degrades in the presence of constant
rearranging. This is procedure for rearranging both
data and acknowledgment packet. Packet
rearranging is generally attributed to transient
conditions pathological behavior and erroneous
implementation. TCP uses two strategies for the
detection of the packet loss the first one is based
on the sender’s retransmission timeout which is also
referred as coarse timeout. When the senders

96 Lal & Dubey, Orient. J. Comp. Sci. & Technol., Vol. 3(1), 95-102 (2010)

timeout which is responded by the congestion
control by slow start which leads into decreasing
congestion window to one segment. The packet
detection loss is detected at the receiver side by
using the sequence number. In this case receiver
checks the sequence number of received packet.
The hole in the sequence indicates that there is
loss of the packet in such case the receiver

generates the duplicate acknowledgement for every
“out-of-order” segment it receives. Until the lost
packet received, the entire reaming packet with
higher sequence number is consider as out of order
and will cause to creation of duplicates packets. After
that sender retransmit the lost packet without waiting
for timeout which helps to reduction of congestion
windows.

Packet Inter Arrival Time
Algorithm

Packets being processed by the sender
are kept in one of two lists: the to-be-sent list
contains all packets whose transmission is pending,
waiting for an “opening” in the congestion window.
The to-be-ack list contains those packets that were
already sent but have not yet been acknowledged.
Typically, when an application produces a packet it
is ûrst placed in the to-be-sent list; when the
congestion window allows it, the packet is sent to
the receiver and moved to the to-be-ack list; ûnally
when an ACK for that packet arrives from the
receiver, it is removed from the to-be-ack list (under
cumulative ACKs, many packets will be
simultaneously removed from to-be-ack).
Alternatively, when it is detected that a packet was
dropped, it is moved from the to-be-ack list back
into the to-be-sent list.

Fig. 1: Packet inter-arrival time

• Packets enter network evenly spaced; • Packets arriving:
⇒ in-order experience expected amount of dispersion;

⇒ out-of-order have smaller inter-arrival times relative to in-order packet arrivals.

As mentioned above, drops are always
detected through timers. To this effect, whenever a
packet is sent to the receiver and placed in the to-
be-ack list, a timestamp is saved. When a packet
remains in the to-be-ack list more than a certain
amount of time it is assumed dropped. In particular,
we assume that a packet was dropped at time when
exceeds the packet’s timestamp in the to-be-ack
list plus an estimated maximum possible round-trip
time .

 As data packets are sent and ACKs
received, the estimate of the maximum possible
round-trip time is continuously updated. The
estimate used is given by

where is a constant larger than 1 and an
exponentially weighted average of past

97Lal & Dubey, Orient. J. Comp. Sci. & Technol., Vol. 3(1), 95-102 (2010)

Whenever a new ACK arrives, we update
as follows:

where denotes a positive constant smaller than
1, the ûoor of the current congestion
window size, and the

 for the packet whose acknowledgment just
arrived. The reason to raise to the power is that in
one the formula in (2) is iterated times. This means
that, e.g., if there were a sudden decrease in the

 then would decrease by a rate of

 per ,

independently of the current value of the congestion

window. The parameter can therefore be

interpreted as a smoothing factor in units of

. As discussed in Section IV, the

performance of the algorithm is actually not very
sensitive to changes in the parameters and ,
provided they are chosen in appropriate ranges.

Note that tracks the peaks of RTT.
The rate that decays after a peak is controlled by

. The right-hand plot shows how large jumps

can cause (for this data

set, occurrences at 15 s, 45 s, 75 s, etc.) resulting
in spurious time- outs (note that the jumps in RTT
in the right-hand plot were artiûcially generated). In
order for these jumps to cause a spurious timeouts,
the jumps in RTT could occur no sooner than every
15 seconds. In this case, 1500 packets were
delivered between these jumps. If the jumps
occurred more frequently, then, as can be seen from

the figure , would not have decayed to a

small enough value and spurious timeouts would
not occur. Furthermore, if the jumps were larger,
then the time between jumps to cause a timeout
would be no smaller. The issue of spurious timeouts
is closely examined.

Two modes exist for the update of the
congestion window:slow-start and congestion-
avoidance. The sender always starts in slow-start
and will only go back to slow-start after periods of

extreme losses. In slow-start , starts at 1

and increases exponentially (increases by one for

each ACK received). Once the first loss is detected,

 is halved and the sender transitions to

congestion-avoidance, where increases

linearly (for each ACK received).

Subsequent drops cause fur ther halving of

, without the sender ever leaving
congestion-avoidance. An important but subtle point
in halving is that when a packet is sent, not only a

timestamp but the current value of is saved

in the to-be-ack list. When a packet drop is detected,
then is actually set equal to half the value of at the
time the packet was sent and not half the current

value of . This makes the algorithm fairly

insensitive to the delay between the time a drop
occurs until it is detected.

To prevent bursts of drops from causing

excessive decreases in , once a drop is

detected a snapshot of the to-be-sent list is taken
and saved into an auxiliary list called memorize. As
packets are acknowledged or declared as dropped,
they are removed from the memorize list so that
this list contains only those packets that were sent

before was halved and have not yet been

unaccounted for. When a packet in this list is

declared dropped, it does not cause to be

halved. The rational for this is that the sender already
reacted to the congestion that caused that burst of
drops. This type of reasoning is also present in TCP-
New Reno and TCP-SACK.

METHODS

TCP without Constant Packet Rearranging
If we transmit a message without packet
rearranging, then If part of a message is lost during
the transmission then we need to retransmit the
entire message or we need to retransmit from that
particular part. Therefore, upon detecting loss, the
TCP sender backs off its transmission rate by
decreasing its congestion window.

TCP with Constant Packet Rearranging
If we transmit a message as packets then

we need to retransmit only the packet which is lost
and not the entire message. The message is send
from the source to the ingress router and then to

98 Lal & Dubey, Orient. J. Comp. Sci. & Technol., Vol. 3(1), 95-102 (2010)

the intermediate routers and then to the outgress
router and the destination. The basic idea behind
TCP constant packet rearranging is to detect packet
losses through the use of timers instead of duplicate
acknowledgments. This is prompted by the
observation that, under constant packet
rearranging, duplicate acknowledgments are a poor

indication of packet losses. Because TCP constant
packet rearranging relies solely on timers to detect
packet loss, it is also robust to acknowledgment
losses as the algorithm does not distinguish
between data (on the forward path) or
acknowledgment (on the reverse path) losses.

Table 1 : code for TCP-CPR

Figure 2(a) : Packet rearranging

99Lal & Dubey, Orient. J. Comp. Sci. & Technol., Vol. 3(1), 95-102 (2010)

Segmentation
Segmentation is the process of dividing the

source code into small number of packets and
transmitting the packets through the routers. We
define certain limits for the size of the packets. The
header information includes source machine name,
destination machine name, position of the packet
and the related information.

Timer control
Whenever each and individual packet

starts sending a timer is started. The system current
time is taken as a start time and added with delay
and it acts as a threshold time and if the threshold
time exceeds the maximum elapsed time of the
packet then the packet is retransmitted. If the time
doesn’t exceed then the packet may arrive safe. If
so the next packet is transmitted else the current
packet is transmitted until it arrives safely. Thread
concept is used to implement the timer.

Figure 2(b) : Packet rearranging

Fig. 3: Data flow diagram

100 Lal & Dubey, Orient. J. Comp. Sci. & Technol., Vol. 3(1), 95-102 (2010)

RESULTS

The performance of the transmission
control protocol with packet rearranging is tested
on WINDOWS XP, LINUX and SOLARIS.

Comparison chart compares the throughput of TCP-
WCPR with TCP-CPR. The performance is shown
by comparing the Transmission rate of existing
system with proposed system

Fig. 4(a) Comparison chart of TCP without packet rearranging and with
packet rearranging in Windows Xp

Fig. 4(b) Comparison chart of TCP without packet rearranging and with
packet rearranging in Linux

101Lal & Dubey, Orient. J. Comp. Sci. & Technol., Vol. 3(1), 95-102 (2010)

CONCLUSION

In this paper we proposed and evaluated
the performance of TCP constant packet
rearranging, a variant of TCP that is speciûcally
designed to handle constant rearranging of packets
(both data and acknowledgment packets). Our
simulation results show that TCP constant packet
rearranging is able to achieve high throughput when
packets are reordered and yet is fair to standard

Fig. 4(c) Comparison chart of TCP without packet rearranging and with
packet rearranging in Solaris

TCP implementations, exhibiting similar
performance when packets are delivered in order.
Such mechanisms include proposed enhancements
to the original Internet architecture such as multi-
path routing for increased throughput, load
balancing, and security; protocols that provide
diverseiated services; and traffic engineering
approaches. As shown from result that the delay
time for XP is more than that of Linux ,which is
much more then of Solaris

1. Luo X. and Chang R. K. C., “Novel
Approaches to End-to-end Packet
Rearranging Measurement” Proc. ACM/
USENIX Conf. Internet Measurement,
(2005).

2. Bare, A.A., “Measurement and Analysis
of Packet Rearranging,” Masters Thesis,
Dep. Computer Science, Colorado State
University, (2004).

3. Colin M. Arthur, Andrew Lehane, David Harle,
“Keeping Order: Determining the Effect of

REFERENCES

TCP Packet Rearranging,” icns, pp.116,
International Conference on Networking and
Services (ICNS ’07), (2007).

4. Sharad Jaiswal, G. Iannaccone, C. Diot, J.
Kuorose, and D. Towsley. Measuring and
classiûcation of out-of-sequence packets in
a Tier-1 IP Backbone, International
Measurement Workshop(IMW), (2003).

5. Piratla, N. M. , Jayasumana A. P. ,and Bare
A. A., “A Comparative Analysis of Packet
Rearranging Metrics,” Proc. IEEE/ACM 1st

102 Lal & Dubey, Orient. J. Comp. Sci. & Technol., Vol. 3(1), 95-102 (2010)

Int. Conf. Communication System Software
and Middleware (COMSWARE 2006), New
Delhi, (2006).

6. Jaiswal, S., Iannaccone, G., Diot, C.,
Kurose, J. and Towsley, D., “Measurement
and Classification of Out-of-sequence
Packets in Tier-1 IP Backbone,” Proc.
IEEE INFOCOM, pp. 1199- 1209 (2003).

7. R. Teixeira, K. Marzullo, S. Savage, and G.
M. Voelker, “Characterizing and measuring
path diversity of Internet topologies,”
presented at the ACM SIGMETRICS, San
Diego, CA, (2003).

8. S. Bohacek, “A stochastic model of TCP and
fair video transmission,” in Proc. IEEE
INFOCOM, pp. 1134–1144 (2003).

9. M. Franklin, T. Wolf. A Network Processor
Performance and Design Model with
Benchmark Parameterization. First
Workshop on Network Processors,
Cambridge, MA, (2002).

10. S. Bohacek, J. Hespanha, K. Obraczka, J.
Lee, and C. Lim, “Secure stochastic routing,”
presented at the ICCCN’02, Miami, FL,
(2002).

