Oriental Journal of Computer Science & Technology

Vol. 3(1), 83-88 (2010)

Analysis of AES hardware and software implementation

R. VELAYUTHAM' and D. MANIMEGALAI?

Department of Computer Science and Engineering, Einstein College of Engineering, Tirunelveli, (India).
Department of IT, National Engineering College, Kovilpatti, (India).

(Received: April 12, 2010; Accepted: June 04, 2010)

ABSTRACT

In November 2001 NIST published Rijndael as the proposed algorithm for AES(Advanced
Encryption Standard). The result of new attack methods shows that there may be some missing partin
the design of S-box and key schedule with AES algorithm. The problem is the weakness of linearity
existing in the S-box and key schedule. In order to keep away from the new attacks and implement the
AES in software and hardware provides higher level of security and faster encryption speed; we analyze
in detail the AES algorithm and propose a new implementation scheme for increasing complexity of
nonlinear transformation in design of S-box. Implementation scheme with Java and the use of
reconfigurable coprocessor as a cryptography hardware is proposed.

Keywords: AES Hardware, Software implementation.

INTRODUCTION

Initially the AES algorithm was believed of
much more security and of no weakness in the ideas
of most people. However, recently cryptanalysts
have also obtained some breaking methods on the
AES. This paper first analyzes the AES algorithm
and point out the weakness of linearity existing in
the design of S-box and key schedule from the
standpoint of new attack methods. Secondly, it
proposes to improve the design of S-box to increase
its nonlinearity and complexity in the implementation
scheme for AES. The S-box used in this scheme
has stronger resistance against the new attacks
than the standard one. Thirdly, this scheme is used
in the LAN for secured communication. Fourthly, it
proposes hardware design of AES where parallel
processing and pipelining is possible. Hardware
systems offer superior performance with higher
throughput. Helion Technology claims that speed
exceeding 16 Gbps for FPGA and 25 Gbps for ASIC
design is available.

Rijndael Algorithm

Rijndael algorithm is a symmetric block
cipher with a block length of 128 bits and supports
key lengths of 128, 192 and 256 bits. The minimum
key length is 128 bits. Both block length and key
length can be extended very easily to multiples of
32 bits. The procedures of AES encryption and
decryption in Cipher Block Chaining (CBC) Mode
[14] are shown in Figure 1 and 2, respectively. In
CBC (Cipher Block Chaining) mode the input to the
encryption algorithm is the XOR of the next 64 bits
of plaintext and the preceding 64 bits of cipher text.
It finds its application in general purpose block
oriented transmission and authentication.

In Figure 1, the block size is 128 bits
according to AES specification at present. The
number of rounds (Nr) depends on the length of
main keys (Nk) and the number of block columns
(Nb), i.e. Nr = Nk + Nb + abs (Nk-Nb), where Nk =
4.e.g.if Nk =4 and Nb = 8, then Nr = 14. The round
transformation is composed of four different
transformations.

84 Velayutham & Manimegalai, Orient. J. Comp. Sci. & Technol., Vol. 3(1), 83-88 (2010)

SubBytes Transformation: Uses an S-box
to perform a byte-by-byte substitution of the
block.

Shift rows: A simple permutation.

Mix columns: A substitution.

Add round key: A simple bitwise XOR of the
current block with a portion of the expanded
key.

In the Rijndael algorithm, all steps are
invertible. The decryption is shown in Figure 2. It is
classified in to the straightforward decryption
algorithm and the equivalent decryption algorithm.
For SubBytes transformation, ShiftRows
transformation, MixColumns transformation and
AddRoundKey addition, an inverse function is used
in the decryption algorithm. Decryption algorithm
make use of the expanded key in the reverse order.

The Problem of Aes Security

Rijndael has been designed to have very
strong resistance against the classical
approximation attacks, such as linear cryptanalysis,
differential cryptanalysis etc. However since Rijndael
is derived form Square algorithm, and is very
algebraic, new algebraic and improved differential
attacks have appeared.

1) Strength against Known Attacks

The AES specifies three key sizes, 128,
192 and 256 bits. Their number of possible keys is
3.4 x1038,6.2x 1057, and 1.1 x 1077, respectively.
In comparison, DES keys are 56 bits long, which
means there are approximately 7.2 x 1016 possible
DES keys. Thus, there are on the order of 1021
times more AES 128-bit keys than DES 56-bit keys.
AES with 128-bit keys has stronger resistance to
an exhaustive key search than DES. Although
classic differential and linear attacks are invalid for
the AES, they have been extended in several ways
for recent years and new attacks have been
published that are relative to them. The newest
attack combined boomerang and the rectangle
attack with related-key differentials uses the
weaknesses of few nonlinear transformations in the
key schedule algorithm of ciphers, and can break
some reduced-round versions of AES. For example,
it can break 192-bit 9-round AES by using 256
different related keys. The Square attack is also valid
for Rijndael, as Rijndael inherits many properties

form Square. The original Square attack can break
round-reduced variants of Rijndael up to 6 or 7
rounds (i.e. AES-128 and AES-192) faster than an
exhaustive key search .
(2) Weakness of the existing S-box and key
schedule

S-box is only one component to implement
nonlinear transformation in the AES. The
cryptographic strength of the AES depends strongly
on the choice of S-box. Many cryptographists have
discovered that there are some weaknesses in the
design of the existing S-box. For example, Y. B.Wang
proved that the S-box has the properties of short
periods and bad distribution, which may be a fatal
weakness for AES. The new way of equivalent
generating the S-box was found by Y. A. Zhang and
D. G. Feng . It may be a great help to the algebraic
attack. In order to make up the weakness of the
existing S-box and improve the nonlinearity of S-
box, W. Millan proposed to use the iterated hill
climbing be used for self-inverse S-box[15] . J. M.
Liu, etc thought that the algebraic expression of AES
S-box is very simple and fewer terms are involved
[16]. They proposed to adopt a new algebraic
method to design the S-box. In comparison with
the cipher itself, the Rijndael key schedule appears
to be more of a linear design. It has a much slower
diffusion structure than the cipher, and contains
relatively few nonlinear elements. It can almost be
described as a collection of 32 linear feedback shift
registers LFSRs, working in parallel. This implies
that for related keys, i.e., pairs of unknown keys
with known differences, one can in part predict the
differences of the individual round keys.

Proposed Methodology
i) Software

In order to reduce the cost of
implementation, we adopt the method of software
to implement AES algorithm. In addition, Java is an
object oriented programming language with many
interesting security features (e.g. sandbox
paradigm, byte code verification) [17]. Hence, it is
proposed to implement AES in Java. Apart from its
security, the efficiency of AES is of main interest
for application developers. In this scheme, the
speeds of data encryption and decryption are
selected as the performance indices to evaluate the
efficiency of AES. The speed of data encryption is
defined as the quotient obtained by dividing the bit

Velayutham & Manimegalai, Orient. J. Comp. Sci. & Technol., Vol. 3(1), 83-88 (2010)

number of plaintext input by corresponding
encryption time in second. So is the speed of data
decryption. The scheme of the proposed
implementation uses ten data members as shown
in Fig. 3. The cipher system involves three important
methods, i.e. Key expansion shown in Fig. 4, Cipher
and InvCipher shown in Fig. 5. They implement the
function of the key schedule, data encryption and
data decryption, respectively.

INPUT CIPHER / INPUT PLAIN //
TEXT Vi KEY i

rd

Block l Key
Expansion

The Final Add Round Key . X
Inv Shift Rows g Round Key (N} ‘

Round Inverse
Transformation Inv Sub bytes

{N-1) Reund
Inverse
Transformation

Add Round Key
Inv Mix Columns

- " Round Key (8-1)
Inv Shift 5 " [‘_

Inv Sub bytes

. SN

The First Add Round Key -
e T Inv Mix Columns e Round Key (1)
Round Inverse ot
Transformation 1y Shift Rows
3 Iny Sub bytes
Round Key (0} L

Inverse
Initialization

|I/ Output Plain
\ Text)I

Fig. 1 Encryption

public enum KeyLength {128 bits,i92 bits,256 bits}
//Select the length of cipher key

private int Nb;//Block size in word

private int Nk;//Key size in word

private int Nr;//Number of rounds

private byte[] Key;//Cipher Key array

private byte[,] Sbox;//S-Box

private byte[,] InvSbox;//Inverse S-Box

private byte[,] w;//Key schedule table

private byte[,] Rcon;//Round constants table
private byte[] State;// Intermediate Cipher result
pictured as array

Fig. 3 Data Members Used in the Proposed

AINPUT PLAIN TEXT p
o - INFUT CIPHER
’) KEY
Block Padding and ’ Key
it zution = Expansion

[NOR Round Koy () ‘
1.9 yd
R Kev i1}
o o]
oy

L
Sub hytes

The First Round
Transformation

(-1} Rl
Transtormation

E
- Round Key (N3 .

sundd Koy

et Round Keyv (%-1) -

The Final Round
Tra wation

e Round Key

s 4

[Output Cipher :|
\ Test /

Fig. 2 Decryption

Scheme:

Public void KeyExpansion()

{
this.w=new byte[Nb*(Nr+1),4];
for (int row=0;row<Nk;++row)
{
this.w[row,0]=this.key[4*row];

this.w[row,1]=this.key[4*row+1};
this.w[row,2]=this.key[4*row+2];
this.w[row,3]=this.key[4*row+3];

1

byte[] temp=new byte[4];

for (int row=Nk;row<Nb*(Nr+1);++row)

{

temp [O]=this.w[row-1,0];

temp [1]=this.w[row-1,1];

temp [2]=this.w[row-1,2];

temp [3]=this.w[row-1,3];

if (row%Nk==0)

{

temp=SubWord(RotWord(temp));

temp [0]=

(byte)((int)temp[0]/(int)this.Rcon

[row/Nk,0]);

temp [1]=

(byte)((int)temp[1]7(int)this.Rcon

[row/Nk,1]);

85

86 Velayutham & Manimegalai, Orient. J. Comp. Sci. & Technol., Vol. 3(1), 83-88 (2010)

temp [2]= (byte)((int)temp[2]~(int)this.Rcon [row/
Nk,2]);
temp [3]=
[row/Nk,3]);
}
else if (Nk>6 && (row%Nk==4))
{

(byte)((int)temp[3]7(int)this.Rcon

temp=SubWord(temp);
}
this.w[row,0]=
Nk,0]A(int) temp[0]);
this.w[row,1]= (byte)((int) this.w[row-Nk,1]A(int)

(byte)((int) this.w[row-

temp([1]);
this.w[row,2]= (byte)((int) this.w[row-Nk,2]*(int)
temp[2]);
this.w[row,3]= (byte)((int) this.w[row-Nk,3]*(int)
temp([3]);
1
1

Fig. 4 Method of Key Expansion in the Proposed
Scheme

public void Encrypt(byte[] input,byte[] output)

{

this.State= new byte[4,Nb]; //state=input

for(int i=0;i<(4*Nb);++i)

{

this.State[i%4,i/4]=input[i];
}
AddRoundKey(0);

for(int round=1; round<=(Nr-1); ++round)

{

SubBytes();
ShiftRows();
MixColumns();
AddRoundKey(round);
1
SubBytes();
ShiftRows();
AddRoundKey(Nr);
for(int i=0;i<(4*Nb);++i) //output=state
{
output[il=this.state[i%4,i/4];
1
1

Fig. 5 Methods of Data Encryption and
Decryption in the Proposed Scheme

There are two S-boxes to be designed in
the proposed implementation scheme. Users can
select either of the two according to their will. Where,
one of them is a standard S-box described in. The
other is an implemented S-box. In order to increase
the nonlinearity and computational complexity of S-
box, the improved S-box is designed by using the
combination of the iterated hill climbing algorithm
and a new algebraic method. It may have stronger
resistance against new attacks than the standard
S-box. How to increase the nonlinearity of key
schedule is one of the important problems that we
want to solve in the future. The default algorithm in
our scheme is AES with 256 bits keys. AES with
256 bits keys has the highest security margin among
three standard AES variants. Users can also
customize an AES by using an improved S-box or /
and expanded rounds [18]. Adding more rounds to
Rijndael may increase the security margin to protect
from new attacks. The speed of data encryption for
AES using Java implementation is over that of RSA
(45.8kb/s) using hardware implementation. The
experimental results of Java implementation that
our scheme is feasible, and has a good performance
of encryption and decryption speed.

ii) Hardware:

Currently, several hardware
implementation methods have been designed and
published. There are many design choices
encountered during hardware implementation of
AES. In reality, these choices will be limited to its
applications and budget. From the perspective of
performance, major decision lies in the tradeoff
between area and speed. For example, fast system
is obtained at a cost of increased area, and vice
versa. Before looking into different hardware
architectures, basic hardware concepts are defined.

Pipelining: Replicating rounds and placing registers in
between - Increases throughput.

Iterative Looping: One round of hardware design, which
forces the algorithm to reuse the same hardware.

Loop unrolling: Refers to the process of unrolling multiple
rounds.

Latency: An elapsed time between start to finish of
encryption.

Velayutham & Manimegalai, Orient. J. Comp. Sci. & Technol., Vol. 3(1), 83-88 (2010) 87

Although efficiency of hardware
implementation was one of the evaluation criteria
for choosing AES, only few hardware designs are
presented for FPGA or ASIC platforms [9]. Analysis
of routing was not mentioned in most papers. For
FPGA target, routing placement is predetermined
within the FPGA architecture and this is the cause
for greater area in FPGAs compared to ASIC
designs. On contrary, area of ASIC designs would
be greatly affected by routing overhead, where the
minimum bus length is 128 bit. ASIC’s floorplan in
[9] reports that the area estimations of routing were
off by a factor of two. Previous experience with layout
CAD tools helped me to realize the complexity of
routing problems and its effect on chip area. In order
to achieve optimized ASIC hardware design of AES,
efficient routing algorithm is mandatory.

FPGA Coprocessor

Previous sections examined stand alone
AES hardware implementations. Following section
describes the design which supports a coprocessor.
Organization of this architecture consists of a CPU
with an aid of a FPGA coprocessor. Coprocessor
design integrates software and hardware into a
single system, along with the reconfigurable
capability of FPGA. Generally, the CPU controls the
overall system operations while FPGA is responsible
for calculations involving extensive computations.
Moreover, FPGA is reconfigurable that can be
reprogrammed in few milliseconds. As an example,
consider an embedded system with a coprocessor,
connected over a network using an Ethernet.
Depending on different situations, the FPGA can
be reprogrammed dynamically according to the real-
time status [11]. This allows FPGA to dynamically
adjust to satisfy its surrounding requests.

Hardware platform that was researched is
an embedded system by Wind River. The physical
setup of this board includes an IBM PowerPC and
Xilinx FPGA daughter card connected through a
custom peripheral bus [12]. Many issues arise for
the mixed system. First, communication between
the processor and the FPGA must be managed.
Type of communication protocol, management of

control signals, and handling of crossing data needs
to be developed. Second, debugging and simulating
the coprocessor design should support the
combination of software and hardware. Lastly,
limited speed of the bus, connecting CPU and FPGA
should be efficiently utilized. Designer should avoid
degrading the overall system’s performance by
analyzing these parameters. Speed of the bus is
the major bottleneck imposed on coprocessor
systems. This is similar to the memory gap between
processor and memory in the PC industry. For
dividing the AES system, one idea would be to allow
the processor to compute shift operation and assign
rest to the FPGA.

CPU - ShiftRow and Control
FPGA - SubByte, MixColumn, and KeyAddition
Shift operations in hardware represent
mere wiring. Moving this function may benefit the
hardware implementation due to reduced amount
of wire interconnects. In other words, decreased
wire parasitic and smaller routing overhead.
Moreover, most of the AES function would operate
on the FPGA and thus minimal communication
occurs between the CPU and the FPGA.

Conlusion

AES is a new cryptographic algorithm that
can be used to protect electronic data. Its security
has attracted cryptographist’s attentions. The
methods of new attacks welled that the design of
existing S-box some weaknesses. The principal
weakness is the problem of linearity in the S-box
and key schedule. It is necessary to improve
nonlinear transformations in the design of S-box
and key schedule in order to protect from new
attacks. Some measures against new attacks were
adopted by improving the complexity of nonlinear
transformation of S-box in the proposed
implementation scheme such that it increases the
security. To increase the data encryption and
decryption time the implemented software design
is embedded with FPGA. Such that the proposed
work mix of software and hardware design
generates an acceptable speed of data encryption
and decryption and also provides security.

88

Velayutham & Manimegalai, Orient. J. Comp. Sci. & Technol., Vol. 3(1), 83-88 (2010)

REFERENCES

A. Elbirt, Reconfigurable Computing for
Symmetric-Key Algorithms, Ph.D. thesis,
Department of Electrical Engineering,
Worcester Polytechnic Institute, 2002.
P.Gutmann, “An open-sourcecryptographic
coprocessor,”

K. Gaj and P. Chodowiec, \Hardware
performance of the AES finalists-Survey and
Analysis of results,” .

Helion Technology,” Tech. Rep., Helion, 2003
W. Trappe and L. Washington, Introduction
to Cryptography with Coding Theory, Prentice
Hall, New Jersey, 2002.

S. Morioka and A. Satoh, “An optimized s-
box circuit architecture for low power aes
design,” in Cryptographic Hardware and
Embedded Systems - CHES 2002, C . K.
Koc and C. Paar, Eds. Aug 13-15, 2002, Forth
International Workshop, Redwood Shores,
USA, pp. 172-186, Springer-Verlag.

B. Megarajan and S. Park, “Hardware
implementation of aes (rijndael),” 2002,
Webpage.

J.V. McCanny M. McLoone, “High
performance single-chip fpga rijndael
algorithm implementation,” in Cryptographic
Hardware and Embedded Systems - CHES
2001, C.K.Koc and C. Paar, Eds. May 14-
16, 2001, Third International Workshop,
Paris, France, pp. 65-76, Springer-Verlag.
A. Lutz, J. Treichler, F. Frkaynak, H. Kaeslin,
G. Basler, A. Erni, S. Reichmuth, P.
Rommens, S. Oetiker, and W. Fichtner,
“2gbit/s hardware realizations of rijndael and

10.

11.

12.

13.

14.

15.

16.

17.
18.

serpent: A comparative analysis,” in
Cryptographic Hardware and Embedded
Systems - CHES 2002, C_ . K. Ko_c and C.
Paar, Eds. Aug 13-15, 2002, Forth
International Workshop, Redwood Shores,
USA, pp. 144-158, Springer-Verlag.

J. Golic and C. Tymen, Multiplicative masking
and power analysis of aes,” in Cryptographic
Hardware and Embedded Systems - CHES
2002, C_ . K. Ko_c and C. Paar, Eds. Aug
18-15,2002, Forth International Workshop,
Redwood Shores, USA, pp. 198-212,
Springer-Verlag.

“Re-Configurable Computing,” Tech. Rep.,
Wind River, August 2002, White Paper.
“Hardware Reference Designs for
SBC405GP” Tech. Rep., Wind River, 2001.
“Real World Experiences Designing For
Mixed CPU + FPGA Systems,” Tech. Rep.,
Celoxica, August 2002, White Paper.
William Stallings, “Cryptography and network
Security”, Third Edition.

W. Millan, “How to Improve the Nonlinearity
of Bijective S-boxes,” Lecture Notes in
Computer Science, vol. 1438, pp.181 - 192,
Berlin: Springer-Verlag, 1998.

J. M. Liu, B. D. Wei, and X.G. Cheng,, “An
AES S-Box to Increase Complexity and
Cryptographic Analysis,”..Proc. of the 19th
International Conference on Advanced
Information Networking and Applications, pp.
724-728., Taiwan, China, 2005.
www.wikipedia.org
www.csrc.nist.gov/publications

