
INTRODUCTION

It has been widely recognized that an
important component of process improvement
is the ability to measure the quality of process.
Even if the central role of software development
plays in the delivery and application of the
software, managers are increasingly focusing on
process improvement in the software development
area. This emphasis has had two effects. The first
is that this demand has encouraged the provision
of a number of new and /or improved approaches
to software development. Second, the focus on
process improvement has increased the demand
for software measures, or metrics with which to
manage the process. The need for such metrics
arise when an organization is adopting a new
technology for which “” “establish practices have
yet to be developed.”

Oriental Journal of Computer Science & Technology Vol. 3(1), 75-82 (2010)

A metrics suite for measuring class
interaction at run time through DCM

AKHIL KHARE¹, HARSH LOHANI² and PALLAVI KHARE³

1Department of Information Technology, Bharati Vidyapeeth College of Engineering, Pune, (India).
2Department of IT, BVUCOE Pune, (India). ³Department of E&TC, SSSIST Bhopal, (India).

(Received: April 15, 2010; Accepted: May 05, 2010)

ABSTRACT

The first step taken while developing software, by an analyst is to construct a sequence diagram
which describes the interaction that must occur between classes. The sequence diagram does not
show the interaction of classes at run time. It shows static coupling, i.e. it only acknowledges the
number of interactions between the classes. There have been many studies done regarding the
relationship between coupling and external quality factors of object-oriented software. A common way
to define and measure coupling is through structural properties and static code analysis. However,
because of polymorphism, dynamic binding, and the common presence of unused or dead code in
commercial software, the resulting coupling measures are not precise as they do not perfectly reflect
the actual coupling taking place among classes dynamically. This paper proposes the use of the
estimated frequency of the use cases and propagates these frequencies through the sequence diagram
to estimate dynamic coupling. This can be done by using Dynamic Clustering Mechanism (DCM)
in which classes which interact with high frequency are clustered or grouped together (called as hot
spots), which are highly dynamically coupled. With this evaluation we will be able to determine which
hot spot are indeed relevant and actually deserves close attention from the designer w.r.t design of
each class.

Keywords: Dynamic Coupling Measurement, DCM, Class Interaction at run time,
Re-engineering, Dynamic Clustering Mechanism.

Given the importance of object-oriented
development techniques, one specific area where
this has occurred is coupling measurement in
object-or iented systems. Object-or iented
technologies are becoming inclusive in many
software development organizations. The goal is to
provide a scientific foundation for the engineering
of object-oriented software.

Typically, object-oriented methodologies
propose grouping classes into subsystems during
the analysis phase in order to reduce the application
complexity. A subsystem consists of a set of classes
that are highly coupled. Other classes, with low
coupling, are outside the subsystem. Coupling is a
measure of the strength of association established
by a connection from one entity to another. Classes
(objects) are coupled three ways:
• When a message is passed between objects,

76 Khare et al., Orient. J. Comp. Sci. & Technol., Vol. 3(1), 75-82 (2010)

the objects are said to be coupled.
• Classes are coupled when methods declared

in one class use methods or attributes of the
other classes.

• Inheritance introduces significant tight
coupling between super classes and their
subclasses.

Stevens et al., who first introduced
coupling in the context of structured development
techniques, define coupling as “the measure of the
strength of association established by a connection
from one module to another”. Therefore the stronger
the coupling between modules, i.e., the more inter-
related they are, the more difficult these modules
are to understand, change, and correct and thus
the more complex the resulting software system.
Coupling can be due to message-passing among
class instances (dynamic coupling) or through static
coupling. It has been noted that it is desirable that
classes communicate with as few others as possible
and even then, that they exchange as little
information as possible. Coupling relations increase
complexity, reduce encapsulation and effective
reuse, and limit maintenance.

Coupling between objects (CBO) is a count
of the number of other classes to which a class is
coupled. It is measured by counting the number of
distinct non-inheritance related class on which a
class depends. Excessive coupling is unfavorable
to modular design and prevents reuse. The more
independent a class, the easier it is to reuse in
another application. The larger the number of
couples, the higher the sensitivity to changes in
other parts of the design and thus maintenance is
more difficult. Strong coupling complicates a system.
Complexity can be reduced by designing systems
with the weakest possible coupling between
modules. This improves modularity and promotes
encapsulation. CBO evaluates efficiency and
reusability.

Previous Work Done
The concept of coupling has been

extensively discussed in the literature. Originally it
was used for accessing modules in structured
design1,2. Coupling is the interconnection that occurs
between modules.

Henderson-Sellers5 describes various
approaches into inheritance coupling and class
coupling. Booch3 classifies these same two kinds
of coupling as generalization/specialization and
peer-to-peer coupling. Berard8 also presents an
extensive discussion on the different possible ways
of measuring class coupling. He classifies class
coupling into interface coupling and internal
coupling and outside internal coupling.

Another approach is Object-Oriented
Methodology. This proposes grouping of classes into
subsystems during the analysis phase in order to
reduce complexity4,6,7. A subsystem is a set of
classes that are highly coupled. Coupling between
two classes measures how much these classes
depend on each other for accomplishing their
responsibilities6. Responsibilities are the methods
expressed by a class through its interface. Each
sub-system can be designed independently and
simultaneously to speed up the design process. But
there is no precise way for identifying subsystems.
This is a very subjective process in the sense that
the resulting subsystem depend on who is analyzing
the object interaction.

Our work focuses on pear-to-pear coupling
at class level. None of the approaches we have just
described have frequency associated with class
interactions. That is, none of these metrics consider
dynamic coupling.

Proposed Method
Dynamic Coupling Measurement

Typically, a development lifecycle consists
of three main phases: analysis, design and
implementation9. We apply DCM during the analysis
phase of a use case driven, object-oriented
methodology4, where class interactions are derived
from use case description. For each use case a
sequence diagram is constructed which describes
the sequence of class collaboration that must occur
so that the use case is executed.

Assumptions
As the DCM is applied during the analysis

phase, no implementation details is required thus
we are not concerned with the message
content(parameters) and the amount of processing
work that each class has to execute to fulfill its

77Khare et al., Orient. J. Comp. Sci. & Technol., Vol. 3(1), 75-82 (2010)

responsibilities. The DCM takes as input interactions
between classes and not between objects. So we
sum up the interactions for objects of class
appearing in various sequence diagrams to get
interaction between classes. DCM considers only
concrete classes that interact and we also consider
that this concrete class has already inherited the
methods of its super class.

Assigning frequencies to Use Cases
We classify the refined use cases into two

categories: Terminal use cases and internal use
cases. A use case is considered terminal if it is
neither extended nor used by any other use case,
others are called internal use case.

We define the frequency of a terminal use
case as the number of times that this use case
occurs within a given interval. These frequencies
are provided by the users. The interval is determined
so that all terminal use cases occur at least once
through all the use cases that it extends. If the
terminal use case extends more than one use case,
then the user must give the frequency with which
this use case extends each of the other use cases.

the frequencies of all use cases that use that internal
node.

The frequency of the use case is
propagated to the collaborations in its respective
sequence diagram. As each of these collaborations
may occur in more than one use case, the frequency
of the collaborations in the collaboration graph (CG)
is given by sum of all the frequencies from the
sequence diagrams in which this collaboration
occurs.

The Input
The Interaction Graph (IG) is derived from

CG which is given as an input to DCM. In the IG,
vertices represent classes and edge represents the
interaction between the classes. The weight of an
edge is the frequency with which the two connected
classes interact. Interaction frequency between the
classes is calculated by summing up the interaction
frequency of the collaboration between those
classes.

For determining the frequency of internal
nodes we first consider the ‘extends’ relation and
then the ‘uses’ relation. The frequency of internal
node which is extended by one or more use cases
is equal to the sum of the frequency of each use
case that extends it. After this, we proceed by
assigning the frequency to internal nodes that are
used by other use cases. This is done by adding

The Process
The DCM takes IG as input and starts by

creating one cluster for each class, called as
singleton cluster. The DCM also takes Cluster
Threshold (CT) as an input. If two classes interacting
with each other with a frequency greater than CT,
and the belong to different clusters, then we must
be combine the two clusters. CT is the minimum
interaction frequency between two classes that will
promote combining their respective clusters.

78 Khare et al., Orient. J. Comp. Sci. & Technol., Vol. 3(1), 75-82 (2010)

4. The Algorithm for DCM:
1. For each class we will make a Singleton

Cluster (i.e. cluster with only one class).
2. Now for each interaction between these

classes, if:
a. Class A and B belong to different cluster.

AND
b. Interaction frequency between Class A

and Class B is greater than Threshold
Frequency, THEN

c. Merge the two classes into one cluster.
3. Repeat step 2 till all the interaction between

different classes is assessed.

Merging two clusters replaces those with
a single cluster, which is the union of the two original
clusters.

The Algorithm Definition and Properties
Definition 1: Two classes A and B directly

interact, if either A invokes a method form B or B
invokes a method from A, or both.

Definition 2: A path between two distinct
classes A and An is sequence <A1, .. , An> of classes
where classes Aj and Aj+1 directly interact with a
frequency Fj > CT, for j = 1, …., n-1.

Assessing Hot Spots
When we run the above algorithm with

respect to a given threshold we won’t be able to
capture all the different hot spots of the application.
That is because, for a given threshold, all the classes
that have their maximum interaction frequency
below the current threshold will not be clustered.
Thus we will be running our algorithm at different
frequencies. For different values of threshold
frequency, we will get different hot spots.

Now to assess the importance of the hot
spots with respect to class development at design
and implementation phase, we have a metric
system.

We add up the frequencies of the classes
inside the cluster (IN) and also add up the
frequencies of the interactions crossing the cluster
boundary (OUT).
• If IN > OUT: The activities inside this cluster

are highly used by the application, and

therefore should be carefully designed.
• If IN<= OUT: The activities are not so

frequent when compared with the frequency
that classes inside the cluster interact with
classes outside the cluster.

Experimental Results
We have tested the DCM along with the

metric with the Grader system[10]. We constructed
the use case models and respective sequence
diagrams, collaboration graph and interaction graph
for the application. We also represent the interaction
graph as a matrix in a similar way with the difference
that each cell has the frequency with which the row
and column classes interact.

For the application we use the following scenario:
• Assign frequency to the refined use cases

using the assignment procedure.
• Run the DCM with threshold equal to each

of the possible frequency values assigned
to the use cases.

• For each run, apply the metric proposed in
the previous case.

We repeated this scenario many times for
each of the applications, each time assigning
different frequencies to the use cases. We decided
to vary the threshold according to the possible
frequency values assigned to the use cases so that
we could analyze how classes were dynamically
coupled with respect to the use cases (which
represent application processing).

Grader System
The Grader System has 42 use cases in

the refined use case model and 69 classes10. In
this section, we discuss the results after running
the DCM with the Grader System where the terminal
use case frequencies were provided by the
application users. The frequencies for internal use
cases were derived using the assignment process
and the interval considered for the use case
frequencies was equal to one school term.

We also tested the DCM with the Grader
System on many other scenarios with different
frequencies for the terminal use cases, but in
general the results were similar to those that we
present next.

79Khare et al., Orient. J. Comp. Sci. & Technol., Vol. 3(1), 75-82 (2010)

Tables A and B present the results for this
scenario. Table A shows the number of singletons
and non-singleton clusters identified at a given
threshold, the number of classes inside the cluster
and the values for the metrics variables (IN and
OUT) along with the ratio of these values.

As presented in Table A, we vary the
threshold from the lowest use case frequency, which
is 2 per term, to the highest use case frequency,
which is 2601 per term. Having the information about
the number of use cases with respect to the current
threshold, we can analyze how the classes are
dynamically coupled with respect to the application
processing. for the Grader System in this scenario,
we observe that the number of singleton clusters
does not increase significantly as the number of
use cases that have frequency less than or equal
to the threshold increases. That means the classes
that are used by these use cases are not so tightly
dynamically coupled. That behavior is also due to
the fact that for each use case, the analyst assigned
one control class to coordinate the activities
described by use case. And these classes are not
used by any other use cases, but only in the use
case that they were assigned to coordinate.
Therefore, when the threshold is equal to the
frequency with which the use case of a control class
occurs, that control class becomes a singleton
cluster.

In terms of non-singleton clusters, for lower
thresholds, most of the time we have only one big
cluster with almost all the classes. However, applying
the metric for this big cluster is not so effective.
This cluster has almost all the classes and the metric
does not provide any relevant information for the
designers to decide for which classes they should
focus their development effort. For threshold equal
to 10 we have two clusters. But as depicted in Table
B, one of these clusters is still the big cluster, and
the other is just one small cluster with two classes.
The metric for this small cluster is more effective
than with the big cluster. It shows that the classes
in these clusters are not so dynamically coupled.
The value in the IN column is less than the value in
the OUT column, which means that the activity
performed by these classes are not so frequent
when compared with the frequency that they interact
with classes outside the cluster.

The metric is more effective for higher
threshold values when the DCM identifies hot spots
with classes that are more highly dynamically
coupled. For the Grader System in this scenario,
more significant non-singleton clusters with respect
to the metric start to appear with threshold values
above 600. The two non-singleton clusters that
appear at this time do not have so many classes in
them as opposed to the initial big cluster from lower
threshold values.

They provide good hot spots for the
designers. The values in the IN column for these
clusters are greater than the values in the OUT
column, meaning that the activities performed by
the classes in these clusters are highly needed by
these application. Designers should carefully design
these classes so that the application performance
can be improved.

Implementation
Dynamic coupling measures are integrated

into existing iterative process. The first few steps
are identical to the original process. The
improvement is visible in the Reengineer
Procedures cycle. Then comparing with the original
process, Dynamic Coupling Evaluation, another
step is added and Equivalence Test is enhanced.

Once a given component has been
reengineered, the process is repeated and next
component is reengineered, until the whole legacy
system has been reengineered. The iterative model
allows the coexistence of the old and new system
and it can ensure the system keep working during
the reengineering process. Improved process takes
full advantage of the runtime information in
Equivalence Test and generates dynamic coupling
measures in Dynamic Coupling Evaluation phase.

1) Analyze Legacy System
During reengineering process, many

maintenance requirements are involved which affect
on different sets of components. Requirements
should be managed carefully. A requirement should
be hold until all relative components are replaced.
The first step in the iterative process is identifying
and mapping all legacy components to every
maintenance requirement.

80 Khare et al., Orient. J. Comp. Sci. & Technol., Vol. 3(1), 75-82 (2010)

Table 1: Number of use cases, singletons and non-singleton clusters with respect to different
thresholds. Results after running the DCM with the Grader System for scenario ONE.

Threshold(T) 2 6 10 16 20 25 40 50 120 245 440 600 2601
Use Case < T 0 9 11 17 18 20 22 26 27 28 30 31 39
Use Case = T 2 2 3 1 2 2 1 1 1 1 1 3 3
Use Case > T 40 31 28 24 22 20 19 15 14 13 11 8 0
Singleton Cluster 2 7 10 15 17 18 23 26 32 36 36 42 58
Non-SingletonCluster 1 1 2 1 1 1 1 1 1 1 1 2 1

Table 2: Results on the relevance of each non-singleton cluster with respect to different
thresholds. Results after running the DCM with the Grader System for scenario ONE

Threshold(T) 2 6 10 16 20 25 40 50 120 245 440 600 2601

Non-

Singleton 1 1 2 1 1 1 1 1 1 1 1 2 1

Cluster

Classes 67 61 2 56 53 51 50 44 41 34 30 30 9 15 4

IN 7463574558 16 744487438074320742247387473419723597093470934297753382720405

OUT 12 75 24 156 206 236 332 657 1112 1862 2427 2427 6824 2683 10565

IN/OUT 6218.75 981 0.65 477.5 360.3 314.9 223.5 112.4 66.02 38.86 29.22 29.22 4.36 12.6 1.93

81Khare et al., Orient. J. Comp. Sci. & Technol., Vol. 3(1), 75-82 (2010)

2) Classify Data
Legacy data records are other critical

factor in reengineering process. They are identified
and interpreted according to the background. The
results include data name, data type and brief
description. User can define the data type based
on the different business scopes. The purpose of
this step is helping software engineers understand
the system data.

3) Redesign Database
In previous phase, software engineers

have classified and understood the data records in
legacy system very well. In this phase, software
engineer can redesign the database. The guidelines
are keeping primary business data which is
necessary for executing business functionality,
removing residual control data which are only
related to legacy system implementation and
enhancing or restructuring data records which are
essential for implementing new system design.

4) Restore legacy components and Migrate Data
Different from previous steps, these two

steps are normally executed concurrently in every
iterative cycle. Before every iterative cycle, the
access of all data records should be redirected in
every related legacy components. These activities
are named as Restore legacy components. The
purpose is only making the new system compatible
with the original one when the data are migrated.
Meanwhile, the legacy data records are migrated
from old format to redesigned database.
5) Equivalence Test

In original iterative process, engineers
ensure that the functionalities and operation of the
reengineered system is the same as the one before
by executing all test cases to. In additional, collecting
dynamic coupling data which are used to perform
following Dynamic Coupling Evaluations is
enhanced.

6) Reengineer Procedure
In this phase, software engineers analyze

the degraded procedure and introduce suitable
remedies to improve the functionality and quality
requirements.

Normally, they perform three activities:
• managing the data access and their relations

to present domain knowledge clearly;
• updating user interface and making it

friendlier to enhance users’ experiences;
• executing maintenance requirements to fulfill

the functionality requirements. , an additional
task, collecting dynamic executing
information, is added to enhance the original
iterative process.

At the end of this phase, the preconditions
for dynamic coupling are ready.

7) Dynamic Coupling Evaluations
This is the emphases of this paper. In

reengineering projects, external quality is one of
the significant standards. Software coupling
measures are involved in our process to make the
reengineered system reach high external quality.
Evaluations on system or component level are
performed by aggregating class level coupling to
help software engineers improve external quality
reengineer procedure phase.

8) Empty Residual DB
Our iterative process allows residual DB

work with redesigned DB together. The residual DB
will be removed until they are not access by
reengineered system.

9) Reconstruct Documents
This phase should be executed for every

phase in the process, because it is necessary to
keep the documents up to data and can describe
the system’s implementation.

CONCLUSION

 We have proposed a Dynamic Clustering
Mechanism that identifies the hot spots during the
analysis phase of a use case driven, object oriented
methodology by assessing class dynamic coupling.
Dynamic coupling is based on the frequency with
which classes interact at runtime. Class interaction
frequencies are derived by propagating use case
frequencies to sequence diagram. Users have to
only provide frequency for the terminal use case,
for the other use cases frequencies are
automatically derived from these initial
frequencies.

82 Khare et al., Orient. J. Comp. Sci. & Technol., Vol. 3(1), 75-82 (2010)

We have implemented the DCM using a
simple linear algorithm. We use different threshold
frequencies to create clusters. These clusters
consists of highly interacting classes and dividing

and allocating them to distinct network nodes would
imply having communication over the network
channel.

1. Myers, G.J Composite/Structured Design.
Van Nostrand Reignhold Company, (1978).

2. Yourdon, E. and L. Constantine. Structured
Design : Fundamentals of a Discipline of
Computer Program and System Design.
Prentice Hall, (1979).

3. Booch, G. Object-Oriented Analysis and
Design with Application. Addison-Wesley,
(1944).

4. Jacobson, I., et al. Object-Oriented Software
Engineering: A use case driven approach.
Addison-Wesley (ACM Press), (1992).

5. Henderson-Sellers, B. Object-Oriented
Metrics. Measure of Complexity. Prentice
Hall, (1996).

6. Wirfs-Brock,R., B. Wilkerson, and L. Wierner.
Designing Object-Oriented Software.
Prentice Hall, (1990).

7. Henderson-Sellers, B. and J. Edward. Book
Two of Object-Oriented Knowledge: The
Working Object. Prentice Hall, (1994).

8. Berard, E. V. Essays on Object-Oriented
Software Engineering. Prentice Hall, (1993).

REFERENCES

9. Pressman, R. S. Software Engineering: A
Practitioner’s Approach. McGraw Hill, (1997).

10. Delcambre, L., and Ecklund, E. Analysis of
the Grader System.

11. H. Zeus, “Properties of Software measure”,
vol 1, (1992).

12. J. Banerjee, H. Chou, J. Garza, W. Kim,
D. Woelk, and N. Ballou, “Data model
issues for object oriented applications,” ACM
Trans. Oflce Inform. Syst., 5: (1987).

13. D. P. Tegarden, S. D. Sheetz, and D. E.
Monarchi, “Effectiveness of traditional
software metrics for object oriented
systems,” presented at the 25th Annu. Conf.
Syst. Sci., Maui, HI, (1992).

14. E. Weyuker, “Evaluating software
complexity measures,”IEEE Trans.Software
Eng., 14: (1988).

15. V. Basili and R. Reiter, “Evaluating
automatable measures of software models,”
in IEEE Workshop Quantitative Sofware
Models, Kiamesha, NY, (1979).

