
INTRODUCTION

The linked data structures or the LDS
traversal often takes place in loops or recursion.
There occurs a problem with LDS traversal called
as Pointer-chasing problem which takes place if the
data is not found in the cache. This problem occurs
because LDS consists of the chains of loads which
are data dependent on each other and form the
links of the LDS as a result of which parallel data
prefetching becomes limited and load latency
increases .

The LDS load latency can be hidden and
the performance of   LDS traversal can be improved
with the help of Prefetching. Address prediction
based techniques can calculate the address and
prefetch the desired arbitrary node but it has its
drawback of not predicting the correct address on
a regular basis. The scheduling technique
prefetches nodes serially but hides the induction
(l=l->next) load latency by scheduling it early in the
iteration. However, It is not effective if the work
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ABSTRACT

During linked data structures(LDS) traversals, prefetching improves the performance by reducing
memory latency. We will discuss about the jump pointer prefetching which hides additional load latency
by using an extra pointer to prefetch objects further than a single link away. Jump pointers can be
implemented in Binary tress by adding jump pointers at creation time and in LDS by adding jump
pointers at traversal time. Prefetch Arrays are also used to store jump pointers. It has two approaches
hardware and software. Both the approaches have highly improved the performance of prefetching
with the use of jump pointers. Prefetching in pointer-based codes(java programs) is difficult because
separate dynamically allocated objects are disjoint, and the access patterns are thus less regular and
predictable. However, according to experimental results, the largest performance improvement is 48%
with jump- pointers in java programs, but consistent improvements are difficult to obtain.
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between the iterations is not enough to overcome
the latency. The inclusion of jump pointers in this
technique can highly improve the performance of
the LDS traversal.The following figure explains how
jump pointers can be used to leverage the work of
multiple iterations.
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The introduction of Jump pointers have
made it possible to overcome the shortcomings of
the techniques which required either to predict the
traversal path a priori or the work between two
consecutive LDA accesses to be enough to overlap
the latency. Before discussing further about jump
pointers we must discuss about greedy prefetching
too.Greedy prefetching  prefetches directly
connected object(s) during each iteration of a loop
or recursive function call.

Fig showing greedy prefetching.

Jump pointers are those which point to the
nodes which are located more than a single link
away.Jump-pointer prefetching may hide additional
latency by using an extra pointer to prefetch objects
further than a single link away. Jump-pointers are a
flexible mechanism for linked data structures
because we can prefetch arbitrary objects and not
just directly connected objects. Jump-pointer
prefetching is potentially able to tolerate any amount
of latency by varying the distance between the two
objects. Jump-pointer prefetching may also reduce
the number of prefetches, yet still remain effective.
Furthermore, jump-pointer prefetching does not
prefetch null objects at the leaf nodes in a binary
tree.

Jump pointer prefetching can be
implemented either by a compiler which automates
jump-pointer prefetching by inserting code to create
and update the jump-pointers as well as inserting
prefetch instructions at appropriate places in the
program or with the use of jump pointers and
prefetch arrays. Jump pointers point to nodes which
are not adjacent in a linked list. Prefetch arrays
consist of a number of jump pointers located in
consecutive memory. These are used to
aggressively prefetch several nodes in parallel that
potentially will be visited in successive iterations.

Creating Jump Pointers
As discussed above,the jump pointers are

used to reduce the memory latency during the
process of prefetching.In LDS,this is made possible
by overlapping the latency involved in node access
by the work between the two iterations.For this
purpose,the distance(in dynamic nodes
traversed)between the home and the target nodes
should be proportional to the target node access
latency. Take for example,if each node consists of 5
cycles of  work and the node access requires 25
cycles,then the home node of the jump pointer
should be 5 nodes ahead of the target node.The
distance between the two nodes has to be accurate
because

1) If the distance is too short, only part of
the target access latency will be hidden.
2) If the distance is too long, the prefetch
block will be evicted before it can be used.

Since gathering the ideal distance between
nodes is a daunting task,a prefetch
distance(prefD) is selected which is usually the
maximum or the average required distance per
node.The jump pointers are then set at s distance
of prefD before the target nodes. This is easily
accomplished using a queue of length prefD.On LDS
creation,or first traversal, a queue maintains the last
prefD node addresses. As each new node is added
(traversed) a jumppointer is created with the node
at the head of the queue  as its home and the current
node as its target. The current node is then
enqueued at the tail of the queue, while the home
node at the head is removed. Jump pointers for
binary trees can be created with the code described
below.

Creation Order 1234567
    OR
7654321

Traversal Order 1234567
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Jump Pointer Prefetching-binary Tree Traversal

Fig 2.
Class Tree
{
Int value;
Tree left;
Tree right;
Tree prefetch;
}

Tree createTree(int l)
{
If(l==0) return null;
 Else
{
Tree n=new Tree();
jumpObj=jumpQ[i];
jumpObj.prefetch=n;
jumpQ[i++%size]=n;
Tree left=createTree(l-1);
Tree  right=createTree(l-1);
n.left=left;
n.right=right;
return n;
}
}

The code shown above is for building jump-
pointers in a binary tree object at creation time.  The
circular queue, jumpQ, maintains a list of the last n
objects allocated. When a new object allocation
occurs,a jump-pointer ics created from the object
at the head of jumpQ to the new object. Then,the
new object is inserted at the end of jumpQ, and the
circular queue index is advanced3,8.

Adding Jump Pointers at Creation Time
Jump pointers when added at object

creation time in data structures with regular access
patterns, minimizes run time cost because the jump
pointers are created only once. But as in Fig 2 the
limitation that the creation must be preorder,
beginning with either the left or the right sub tree
makes it difficult to create effective jump pointers
at creation site. If the jump pointers are built bottom
up, then they will not be useful. Also if a program
frequently updates a linked structure containing
jump pointers then the original jump pointers
become invalid.

Adding Jump Pointers During Traversal
For programs that frequently traverses and

updates the linked structure, building jump pointers
is very effective. Also here, the code to create jump
pointers appears locally. However, this approach
becomes less effective when the traversal pattern
of the LDS changes e.g., accessing a list in one
direction followed by an access in the reverse
direction, due to the overhead of maintaining the
jump pointer queue3.

Performance Measurement
The performance measurement is being

carried out for LDS which is a list or a tree which is
traversed depth first.In a particular LDS traversal
algorithm, there is present a loop or a recursion
and a node in the LDS is  fetched and some work is
performed using the data found in the node. In the
Fig 2.1,the tree is traversed depth first. In each
iteration, a node is visited ,some work is performed
and the next node is fetched. The loop is repeated
until there are no more nodes. An important
observation is that a load that fetches the next node
is dependent on each of the loads that fetched the
former nodes. Hereafter, these loads are being
referred to as the  pointer chase loads.The efficiency
of prefetching is determined by the following four
factors:-

1) Time to perform the whole loop body
i.e.,work.

2) Branching factor of the LDS BranchF.In case
of a binary tree it is two.

3) The number of nodes traversed i.e.,chainL
or chain length.

4) The latency of the load or the prefetch
i.e.,Latency1.

LHC(Latency Hiding Capability) is the
fraction of the pointer-chase load latency that is
hidden by prefetching. For the prefetch to be fully
effective, Work <= Latency must hold. In this case,
a prefetch would be issued at the beginning of an
iteration and it would be completed when the
iteration ended and LHC = 1. However,if Work <
Latency only a part of the latency would be hidden
as shown in the equations below.

(1)
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Fig 2.  The prefetch launches by the jump pointers in a binary tree and a linked list.P denotes
the jump pointer launches and PREFETCH_D is the fixed distance fd discussed.

For hiding latency while prefetching nodes
when Work<Latency, the distance of the next node
needs to be calculated. This distance is referred as
prefD .To attain this goal, jump pointers are
required.These jump pointers are the extra pointers
in the nodes which point to the nodes that are prefD
iterations ahead. The drawback of this technique is
that the nodes that are prefD-1 distance ahead
cannot be prefetched. Hence, if chainl<prefD,then
the prefetch hiding capability will be zero. If instead
chainL>=prefD, ignoring the effect of LHC on the
first prefD-1 load misses and branchf=1 there is
only one traversal path, thus LHC=1 if prefD is set
properly.

But if the branchF is more than 1,then it is
assumed that every tree node is prefetched with
the same probability and that the tree is traversed
depth first until the first leaf node is reached.The
probability that the tree node will be prefetched is

If the traversal path is known beforehand
then the LHC can be made equal to 1 as the jump
pointers can be  initialized to point down the correct
path.
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Prefetch Arrays
The jump pointers are stored in

consecutive memory in an array called as the
prefetch array.This array is located in the node so
that when a node is fetched into the cache the
corresponding prefetch array is likely to be located
on the same cache line, thus most of the time there
will be no extra cache misses when accessing the
prefetch array. The prefetch array is then used in
every iteration to launch prefetches for all the nodes
a number of iterations away. An example code how
this is implemented for a binary-tree is shown in
Figure 3.

When BranchF = 1, jump pointer
prefetching has the disadvantage that it does not
prefetch the first fd-1 nodes as shown in Figure 3.
This is very ineffective for short LDS.A technique
has been devised where the prefetch array is
created at the head of the LDS which points to the
first fd-1 nodes that the regular jump pointers do
not point to. This prefetch array is used to launch
prefetches before the loop is entered that traverses
the list. How this is implemented can be seen in
Figure 2. Once the loop is entered, prefetches are
launched as in jump pointer prefetching. Note that
for all other types of LDS, the main prefetching
principle is the same as the binary tree.

LHC In Binary Trees
The LHC  of our method will be different if

we are traversing lists or traversing a tree, because
there are no jump pointers pointing to the first nodes
in a tree as there are in a list. The rationale behind
this is that short lists are much more common (in
hash tables for example) than short trees and that
the top nodes of a tree will with a high probability
be located in the cache if the tree is traversed  more
than once. On the other hand, if this is not true, a
prefetch array could be included that points to the
first few nodes in the tree, in the same manner as
for lists. For a tree, as we prefetch all possible nodes
at a prefetch distance prefD the effectiveness will
be 1 when chainL>=prefD (ignoring the misses of
the first prefD-1 nodes). However,if chainL<prefD
there will be no prefetches.

For a list, the effectiveness will also be 1
when chainL>=prefD if we ignore the misses to the
first prefD-1 nodes. However, we also aggressively
prefetch the first nodes in an LDS. This means that
we get some efficiency even when chainL<prefD.
The LHC  of the prefetch fetching the first node will
be Min(1,work/latency).The prefetches for the
following nodes will by that time have arrived, and
the LHC of those will be one. The equations are
summarised below.

In using our prefetching scheme, we have
three limiting factors: memory overhead, bandwidth
overhead, and instruction overhead both due to
prefetching and rearranging of jump pointers and
prefetch arrays when inserting/deleting nodes from
the LDS. The memory overhead consists of space
for the prefetch arrays and the jump pointers if used.
If there are branchF possible paths for each node
and the prefetch distance is prefD then the number
of words each prefetch array occupies is
BranchF_prefD.If prefD is large and BranchF >1.
the number of nodes that need to be prefetched
soon gets too numerous, and both the memory,
bandwidth and instruction overhead will be too high
for Prefetch arrays to be effective.

Prefetch Arrays: A Hardware Approach
Hardware-based prefetching techniques

do not cause the instruction overhead associated
with the use of explicit fetch instructions. Hardware-
based prefetching, with the help of cache, can
dynamically handle prefetches at run-time without
compiler intervention. Software-directed
approaches rely on compiler technology. However,
without the benefit of compile-time information,
hardware prefetching relies on guessing about
future memory-access patterns based on previous
patterns. Thus the incorrect guessing will cause the
memory system to bring unnecessary blocks into
the cache. These unnecessary prefetches do not
affect correct program behavior, but instead cause
cache pollution and consume memory bandwidth.
Hardware Jump Pointer Prefetching (JPP) faces
various challenges in finding jump-pointer storage.
For a hardware-only implementation, the
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Dependence Based Prefetch (DBP) mechanism is
used with structures that direct jump-pointer
creation (storage) and prefetching (retrieval).
Dependence-based prefetching dynamically
identifies loads that access linked data structures.
This mechanism implements chain jumping:
restricting jump pointer prefetching to recurrent
“backbone” loads and using DBP to automatically

chain prefetch “rib” loads. This solution automatically
provides queue jumping wherever necessary. This
mechanism is simple to implement in hardware and
handle most programs. Full and root jumping are
not implemented, due to difficulties with finding
jump-pointer storage and also we cannot rely on
them in case of understanding high level programs.

 For jump-pointer creation, queue method
in hardware is implemented. Each static load is
identified as being recurrent (“backbone”) and is
associated with a queue that keeps the note of its
most recent input addresses. Address queues for
the set of active recurrent loads are stored in the
Jump Queue Table (JQT). As soon as an instance
of a recurrent load commits, it accesses the JQT
and creates a jump-pointer from the node sitting at
the head of the queue to the node corresponding
to its own input address. This process is illustrated
in Figure 3(b). list = list->forward creates a jump-
pointer from the node visited four hops ago, A, to
the current node, E. A request is generated for
storing this jump-pointer while the queue is updated
indicating the access of the current node. Jump-
pointer retrieval and prefetch initiation is a more
delicate process which is explained Figure 3(c).
Whenever an LDS “backbone” load issues, the
jump-pointer residing at the corresponding home
node is placed into a special non-architected
location called the Jump pointer Register (JPR). A
jump-pointer prefetch is created using a speculative
instance of the load with the JPR value as its input.
The main issue in implementing hardware jump-
pointers is not which pointers to create, but rather
where to store them.

EXPERIMENTAL RESULTS

Various kernels have been evaluated
according to their efficiency when prefetching is
implied. The effect of prefetching on the execution
time of tree and list traversals is being discussed.

The kernel Mst is a hash table benchmark.
Here the chain L is between two and four and the
Work<<Latency. Here since the work is low, greedy
prefetching improves the performance by only 2%
and jump pointer only by 1% because chain L< fd
most of the time. In PA, part of the latency of the
first nodes in the list will be hidden and thus,
performance is seen in the short lists as well. The
software approach improves performance by 20%.
While the hardware approach improves it by
22%.The second kernel Mst. long has a larger chain
L but otherwise it is the same as mst. This leads to
the conclusion that jump pointer prefetching is more
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effective here.It improves the performance by
35%.However, PA improves the performance by
47% and 48% respectively. The kernel Health has
the following properties: these are not small
programs and LDS nodes are inserted and deleted
frequently during the execution. The second fact
should indicate that jump pointer prefetching and
prefetch arrays should be less effective as they incur
overheads for inser t and delete operations.
However, it is seen that jump pointer prefetching
improves the performance by 27% and PA with 38%
and 39%.The kernel DB. tree is taken from a
database server, and is a depth-first traversal of a
binary index tree in search of a leaf node. The
important aspect of this kernel is that the traversal
path is not known a priori, thus the jump pointers in
jump pointer prefetching is set to point down the
last path traversed, thus the high instruction
overhead for this technique compared to the other.
But jump pointer is not a good option for programs
where traversal is not known a priori. It even
increases the memory stall time due to cache
misses on jump pointer references that most of the
time are useless.Also, the software PA suffers from
a high instruction overhead from the issuing of the
prefetches and only manages to improve the
performance by 3%. The best prefetch approach
for this kernel is hardware PA which improves the
performance by 28%. Greedy prefetching improves
the performance by 15% as the value of Work is
close to the value of Latency. In the kernel Treeadd
,the traversal path is known a priori. Thus, jump
pointer provides a performance increase here. Also
the memory stall time can be removed almost
entirely by changing the prefetch distance to a
higher value, thus jump pointer prefetching can
outperform all other techniques for treeadd.
However, jump pointer prefetching needs to adjust
the prefetch distance for vary ing memory latencies,
while prefetch arrays gives a 40%execution time
reduction, for this kernel, without any tuning. The
last kernel is perimeter that traverses a quadtree in
which the traversal path is known a priori. Both
prefetch array approaches cannot improve the
performance as there are far too many prefetches
that need to be launched when each new node is
entered. The best approach to use should be jump
pointer prefetching after an adjustment of the
prefetch distance to a higher value, which would
reduce the memory stall time even more[1].

Fig 5 Performance measurement in ten
programs to derive the maximum efficiency.

Figure 5 shows the results of greedy
(G),jump pointer (J) prefetching and those without
prefetching (N).The results are normalized to N.
Jump-pointer and greedy prefetching improve
performance as much as 48% and 18%,
respectively. Across all benchmarks, we see
improvements of 10% for jump-pointer and 4% for
greedy prefetching using the geometric mean.[3].

Effects of Insert and Delete Operations
There are two conflicting factors to

consider when examining the performance of insert
and delete operations: The increased instruction
overhead due to updating of prefetch arrays and
jump pointers, and the potential benefit of using
prefetching to speed up the search process often
employed in the insert/delete function. Only inserts
are discussed here, as the overheads of deletes
are similar. In mst the node is always inserted at
the start of the list, thus we cannot use prefetching
to speed-up the insertion. Jump pointer prefetching
performs better than PA because there are fewer
pointers to update. In health, on the other hand,
the node is inserted at the end of the list so
prefetching can now be used when traversing the
list. The actual instruction overhead is higher for
jump pointer prefetching as it uses an expensive
modulo operation. With tree add, the performance
of the process can also be improved with prefetching
and again jump pointer prefetching uses more
instructions due to the expensive modulo operator.
The instruction overhead of PA is a mere 10
instructions for tree add and the execution time is
actually decreased with 10% for PA. Thus, the
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instruction overhead of PA and jump pointer
prefetching is comparable. PA can speed-up the
insertion/deletion with prefetching more effectively
than jump pointer prefetching. The performance is
worst when the node is inserted first in the LDS.

CONCLUSION

Software prefetching is an efficient
technique to tolerate long memory latencies.
Software prefetching has to be accurate and timely

in order to be effective. This approach may use
compile-time information to perform sophisticated
prefetching, whereas the hardware scheme has the
advantage of manipulating dynamic information. The
hardware automatically creates and updates jump-
pointers and generates addresses for and issues
prefetches. The overhead due to the extra prefetch
instructions and associated computations is
substantial in the software approach and can offset
the performance gain of prefetching. Our
experimental results show that the new solution is
very attractive in reducing the data access penalty
without incurring much overhead.
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