
INTRODUCTION

Multispectral Image Processing (MIP) is a
collection of techniques for the manipulation of high-
density and multi-date, multi-stage, multi-polarized,
multi-direction and multi-spectral satellite images
by computers. MIP is an application of DIP (Digital
Image Processing) having a great potential to
identify specific plant species in vegetation covered
area. It is widely used in crop protection, estimation
of physiology and detection of biochemical
components like nitrogen, pigment content1-4,
agricultural monitoring5-6, mapping of cultivate area7,
growth and estimation of crops from local to global
scale8-9.

For sustainable agriculture management
there is no suitable infrastructure to monitor the rice
crop and its varieties. The traditional method of
compiling statistics on rice-crop acreage from
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ABSTRACT

In the present study Multispectral Image Processing (MIP) technique is applied on ASTER
(Advance Spaceborne Thermal Emission and Reflection Radiometer) L1 B high resolution (15 m/
pixel) satellite data. A comprehensive spectral library of rice crop varieties : Hybrid-6129 (IET 18815),
Pant Dhan-19 (IET 17544), Pusa Basmati-1 (IET-18990) and Pant Dhan-18 (IET-17920) has been
developed with Blue (0.56 nm), Red (0.66 nm) and NIR (0.81 nm) spectral bands. The PCA (Principal
Component Analysis) transformation with correlation matrix is applied for feature extraction to select
an optimum subset of data in term of classification accuracy. Four PC (Principal Component) images
selected for conventional spectral and integrated image classification. The integrated image Spectral/
NDVI (Normalized Difference Vegetation Index) is developed using Spectral and NDVI bands classified
using ML (Maximum Likelihood) classifier. The conventional spectral classification accuracy for rice
mapping is 79.5%, which improves up to 84.5% with Spectra/NDVI imagery data.
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different sources is time consuming and expensive.
In addition, the information collected is often rough
and unreliable for agricultural planners, managers
or decision makers on regional and national scale.

The present research work focuses on
analysis of conventional and integrated imagery
data derived from ASTER L1B (Blue, Red and NIR)
and NDVI data on pixel scale to extract the
meaningful information in rice based agriculture
system. The goal of this research is to develop a
comprehensive digital spectral library and classify
rice-crop varieties using a transformed integrated
multispectral image in humid tropical agriculture
system in the state of Uttarakhand in India.

Study Area and Data Used
The study area is surrounded with Ganga

river (Water Body), Habitation (Lakshar Town),
Forest and the boundary of the satellite data
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respectively. It lies between 29°45'32.723 N, 78°72
''16.86'E and 29°44'54.47''N, 78°8'12.09''E.
Uttaranchal is an agrarian state. About 80% of the
population of the state is dependent on agriculture
for its livelihood. 12% of the available land is irrigated
and 64% are fed by natural springs.

In this research high-resolution (15-m)
EOS-satellite Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER)
imagery (L1B) data has been used for image
accuracy assessment of the training site. It is an
advanced multispectral imager that was launched
on board NASA’s Terra spacecraft in December,
1999. The ASTER instrument produces two types
of Level-1 data: Level-1A (L1A) and Level-1B (L1B).
ASTER L1A data are formally defined as
reconstructed, unprocessed instrument data at full
resolution. They consist of the image data, the
radiometric coefficients, the geometric coefficients
and other auxiliary data without applying the
coefficients to the image data, thus maintaining
original data values. The L1B data are generated
by applying these coefficients for radiometric
calibration and geometric resampling. Use of
ASTER data for agriculture applications and
management also requires atmospheric
correction10. ASTER L1 B data of 3rd September
2004 at 05:36 am is used, because the combination
of wide spectral coverage with 14 spectral bands
from the visible to the thermal infrared and high
spatial resolution varies with wavelength: 15 m in
the visible and near-infrared (VNIR), 30 m in the
short wave infrared (SWIR), and 90 m in the thermal
infrared (TIR) allows ASTER to discriminate
amongst a large variety of surface materials, for
geological studies, vegetation and ecosystem
dynamics, hazard monitoring.

Methodology
Geometric Correction

The image is geometrically corrected to
UTM projection with WGS-84 geographic datum in
zone 44. Fig. 1 shows the subset of data (97 pixels
x 82 pixels) used for integration of spectral and NDVI
bands for Maximum Likelihood (ML) supervised
classification.

Atmospheric Correction Using FLAASH
The atmospheric correction of satellite is

a quantitative image processing technique to reduce
the atmospheric influence in object reflectance value
and atmospheric mixing. FLAASH (Fast Line-of-
Sight Atmospheric Analysis of Spectral Hypercube)
is an ENVI utility for handling particularly stressing
atmospheric conditions, such as the presence of
clouds11. FLAASH tool is developed to improve the
wavelength values of NIR (Near Infrared), VNIR
(Visual and Near Infrared) and SWIR (Short Wave
Infrared) bands in the electromagnetic spectrum.
The input radiance image is converted in BIL (Band
Interleaved by Line) or BIP (Band Interleaved by
Pixel) format to get the celebrated radiance value
in floating-point.

In the present study this tool is
implemented on ASTER L1B data with Blue (0.56
nm), Red (0.66 nm) and NIR (0.81 nm) spectral
bands. The centre water column value from FLAASH
is found 4.11467 gm/cm2 and eliminated to improve
the reflectance of the image.

Fig. 1:  Integrated false color image subset of
1.46x1.23km (97x82 pixels) of Mahtoli village

and its nearby region by ASTER with a spatial
resolution of 15 m per pixel.

Fig. 2:  Integrated false color image subset
(97x82 pixels) with ROIs (training classes) of
Mahtoli village and its nearby region by ASTER

with a spatial resolution of 15 m per pixel.
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Table 1: Training classes and selected no. of
pixels with color composition used in

classification

S. Class Type No. of Legend
No. pixels

1. RICE 1 30
2. RICE 2 80
3. RICE 3 31
4. RICE 4 12
5. OPEN FIELD 79
6. SHRUB 15
7. HABITATION 18
8. TREE 26
9. VEG1 (Sugarcane) 16
10. VEG2 (Sugarcane) 32
11. VEG3 (Sugarcane) 62
12. VEG4 (Grass ) 45
13. VEG5 (Vetables) 111
14. MOISTURE 05
Total Sample Pixels 562

in form of graph or curve and called spectral
signature12. The multiple portions of the subset
known as ROIs (Regions of interest) with unique
color composition are selected for digital library of
spectral signatures and classification are listed in
Table 1 and shown in Fig. 2. For intra-classes
variability and unique discrimination of all objects a
digital library of spectral signature is developed for
RICE crop and its varieties are shown in Fig. 3. The
four prime varieties Hybrid-6129 (IET 18815), Pant
Dhan-19 (IET 17544), Pusa Basmati-1 (IET-18990)
and Pant Dhan- 18 (IET-17920) 13 are represented
by thick Brown, Blue, Green and Black lines.

Integration of Spectral and NDVI Bands
Vegetation Indices (VI) are mathematical

transformations signed to access the spectral
contr ibution of vegetation to multispectral
observations and have proved to be very useful in
discriminating different land cover objects. The
Normalized Difference Vegetation Index (NDVI) is
one of the oldest, most well known, and most
frequently used vegetation indices14. The
combination of its normalized difference formulation
and use of the highest absorption and reflectance
regions of chlorophyll make it robust over a wide
range of conditions. It can, however, saturate in

Fig. 3: Typical ASTER (VNIR) spectra of rice varieties, (a) RICE 1 (Hybrid-6129),
(b) RICE 2 (Pant Dhan-19), (c) RICE 3 (Pusa Basmati-1) and (d) RICE 4 (Pant Dhan-18).

(a) Hybrid-6129 (b) Pant Dhan – 19

(c) Pusa Basmati-1 (d) Pant Dhan- 18

Digital Spectral Library
In Digital Image Processing (DIP) the

reflectance value of an object can be represented
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dense vegetation conditions when Leaf Area Index
(LAI) becomes high. NDVI is defined by the following
equation:

NDVI = (NIR-RED)/(NIR+RED)

The value of this index ranges from -1 to
1. The common range for green vegetation is 0.2 to
0.8. The NDVI is calculated from the relative
reflectance data of VNIR region. The ASTER data
have two visual bands B1 (.56 nm), B2 (.66 nm)
and one NIR B3 (.81 nm). The normalized difference
vegetation index (NDVI) has been performed with
NIR (B3) and RED (B2) bands as shown in Fig. 4.
The integrated data is developed jointly by ASTER
L1B data with Blue (0.56 nm), Red (0.66 nm), NIR
(0.81 nm) and NDVI band shown in Fig. 5.

Fig. 4: NDVI band of the study area

Fig. 5: Spectral/NDVI integrated
image of the study area.

PCA (Principal Component Analysis)
Transformation

The PCA (Principal Component Analysis)
transformation is a well established data
compression tool that can be applied on
multispectral data to reduce its dimensionality for
feature extraction and classification. Dimensionality

reduction refers to the process by which the main
components attributing to the spectral variance of
the data set are identified. This is also refers to
removal of noise and data redundancy. The PCA
transformation with covariance and correlation
matrix may be applied to accomplish this task15.

In the present study PCA transformation
with correlation matrix is used to reduce
dimensionality of Spectral/NDVI data. The new
image layers are known PCs (Principal
Components) and image pixels are represented by
eigenvalues. The dimensionality of integrated data
is determined by examining these values as shown
in Fig. 6 and Fig. 7. The integrated data of four
components, 82.5% of the data variance is
explained by first principal component (PC1).
Another 17.5% is covered in next three PCs.

Fig. 7: Eigenvalue spectra after PCA with
correlation matrix

Fig. 6: Regular PCs bands after PCA with
correlation matrix.

Maximum Likelihood (ML) Classification
The Maximum Likelihood Classifier
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(MLC)15 is used to classify 14-landcover classes as
listed in Table 1; in two phases, the first phase of
classification is performed on Visible and Near-
Infrared (VNIR) region only and second on Spectral/
NDVI image by ENVI 4.5 image processing
software. To get the exact location of the training
site and the location of the fields a hand-held GPS
also used. According to the ground survey and
discussion with local farmers, the land culture is
not uniform in the study area. Therefore the RICE
class has been divided into four different classes.
The Google image of the study area has been used
as a reference image to assist in identifying the land
cover. A total 562 pixels have been chosen for
training classes (samples) out of 7954 pixels. The
classification accuracy is computed in the form of a
confusion or error matr ix by comparing a
classification result with ground truth information.
Each diagonal element of the confusion matrix is
the percent of predicted classes that agree with the
ground truth assignment of the pixel; whereas the
off diagonals are those pixels that are misinterpreted
as (or confused with) an alternative class.

Spectral Classification
The overall classification accuracy based

on different features in VNIR region is shown in Fig.
8 and summarized in Table 2. Table 2 shows the
classification confusion matrix with 79.5% (447/562)
overall accuracy and 0.77 kappa coefficient. There
is observable confusion between the RICE1 and
RICE4 class. The RICE1 class exhibits confusion
with RICE4 (3.33%). RICE2 exhibits major confusion
with the RICE4 (51.25%) class. RICE3 class shows
signs of confusion with the RICE4 (35.48%) class.
The analysis of the confusion matrix shows that
RICE4 class do not have the case of confusion with
any other class.

Spectral/NDVI Classification
The classification of Spectral/NDVI image

and confusion matrix has been shown in Fig. 9 and
Table 3. Table 3 shows the classification confusion
matrix with 84.52 % (475/562) overall accuracy and
0.83 kappa coefficient. The RICE 1 and RICE 2
classes are classified 100% after Spectral/NDVI
classification. There is no observable confusion
between the RICE1 and RICE4 class after the
integration. The classification accuracy of RICE 2
and RICE 3 classes is also improved from 41.50%
to 80.00% and 64.52% to 76.42% respectively.

Fig. 9: Spectral/NDVI classification result
based on Maximum Likelihood approach with

14- land cover classes.

Fig. 8: Spectral (VNIR) classification result
based on Maximum Likelihood approach with

14- land cover.

RESULT ANALYSIS

Classification of integrated Spectral/NDVI
image shows the RICE2, RICE3, TREE, VEG2,
VEG3, VEG4 and VEG5 land cover classes are
mixed in nature, except RICE1, RICE4, OPEN

FIELD, SHRUB, HABITATION, VEG1 and
MOISTURE classes. The spectral identities of
RICE2 and RICE3 are heavily mixed together due
the similarity of the crop species and their respective
water content, which is verified after ground survey.
On the other hand, other classes like TREE, VEG2,
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VEG3, VEG4 and VEG5 intermixing are acceptable,
in context of their distribution characteristics. When
NDVI (Normalized Difference Vegetation Index)
band is integrated with conventional VNIR bands, it
provides a significant improvement in the
classification of RICE crop varieties. The result
shows that the four types of rice crops have been
classified more accurately using integrated Spectral/
NDVI image classification.

SUMMARY AND CONCLUSION

The aim of this study is to develop a new

classification approach using integrated
multispectral Spectral/NDVI image. The
classification accuracy of integrated dataset is
increased effectively than conventional spectral
classification from 79.5% to 84.5%. The results
show that the Maximum Likelihood Classifier (MLC)
gives more accurate results than others
classification algorithms to map the agriculture area
using multispectral ASTER L1B data. The Spectral/
NDVI classification is beneficial to increase the
accuracy of vegetation classes than conventional
Spectral classification.
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