
INTRODUCTION

During the past decades, computer plays
a significant role in every field of our modern society
and the computer software is affecting the human
being in every aspect of life. Due to our society's
increasing dependence on software, the size and
complexity of computer software has grown at a
very high peak. Dependency and requirements on
computer software increases the difficulties and
failures of software and the often-devastating effect
that a software error can have in terms of life,
financial loss, or time delays1. To avoid such
circumstances, the demand of quality software
continues to increase.

Our increasing reliance on software
systems and the ever-increasing domain of software
applications puts a high premium on the standard
of quality these systems offer us. Considering the
varied interpretations of quality itself, as well as the
lack of uniform, quantitative quality indicators;
assuring 'quality systems' is not as straightforward
as it seems. Software Quality has intangible aspects,

Oriental Journal of Computer Science & Technology Vol. 3(1), 05-11 (2010)

Software quality measurement: A Revisit

MAZHAR KHALIQ1, RIYAZ A. KHAN2 and M.H. KHAN3

1Department of Computer Science, Amiruddauala Islamia Degree College, LU, Lucknow, (India).
2Faculty of Applied Science, Integral University, Lucknow, (India).

3Department of Computer Science, Institute of Engineering and Technology, UPTU, Lucknow, (India).

(Received: April 12, 2010; Accepted: June 04, 2010)

Abstract

This paper presents a review on software quality measurement. An effort has been made to
put forth the demand and dependency of quality software in our modern society. The demand has
increased the size and complexity of computer software system during the past decades. The software
industry is responding to the demand for high quality product by spending resources to improve the
quality of software product. A brief discussion on quality and software quality has been given. Further,
the discussion on measurement and software quality measurement are presented. Finally, it throws
the light on the role of various software quality models and software metrics for software quality
measurement.

Keywords: Quality, Software Quality, Measurement, Software Quality Measurement,
Software Quality Models, Software Metrics.

which cannot be embodied in standards and thus
renders it rather difficult for quantitative analysis and
interpretations2,3.

Rest of the paper is organized as follows:
In section 2, discussion about quality and software
quality. In section 3, measurement and software
quality measurement has been discussed. In section
4 & 5, the discussion has been made on software
quality models and software metrics respectively.

Software Quality
Quality is a vague and multifaceted

concept, which means each type of customer may
have their own conception of quality. The
assessment of quality is a matter of perception. So,
the identification of a set of quality attributes that
completely represent quality assessment depends
on a lot many things including management
objectives, business goals, tools and techniques
employed and of course the people who produce
the product. Evaluation of the product is probably
the only way out in standardizing some kind of
quantitative measures for quality, as the process

6 Khaliq et al., Orient. J. Comp. Sci. & Technol., Vol. 3(1), 05-11 (2010)

and people factors are both dynamic and variant
and hence cannot be controlled3.

The relationship between product
characteristics and the quality attributes has been
recognized as a major issue in software engineering
based on the premise that improvement in product
attributes will lead to higher quality. An important
assumption here is that internal product
characteristics (internal quality indicators) influence
external product attributes and by evaluating a
products internal characteristics, some reasonable
conclusions can be drawn upon the products
external quality attributes. Since there is a wide
range of potential software quality attributes, it is
not possible to optimize a system for all these
attributes. So a critical part is selection of the quality
attributes according to requirements. Here it is vital
to understand that different quality attributes are
relevant in each phase of the Software Development
Life Cycle and a decision as to where to focus is
very important in order to produce quality software.
Considering the fact that inefficiencies in software
design account for the maximum errors thereby
contributing to maintenance costs, it is only wise to
isolate the errors as early as possible in the design
phase to eliminate ripple costs2,3.

Quality has been defined by various standards.
Some of them are as follows:
German Industry Standard

"Quality comprises all characteristics and
significant features of a product or an activity which
relates to the satisfying of given requirements."

ANSI(American National Standards Institute)
Standard

"Quality is the totality of features and
characteristics of a product or a service that bears
on its ability to satisfy given needs."

IEEE(Institutes of Electrical and Electronics
Engineers) Standard

"The totality of features and characteristics
of a software product that bears on its ability
to satisfy given needs."
"The degree to which a customer or user
perceives that software meets his or her
composite expectations."

"The composite characteristics of software
that determines the degree to which the
software in use will meet the expectations of
the customer."

Software Quality Measurement
It is well accepted fact that measurement

enables designers and managers to obtain
quantitative measures of attributes in entities and
also serves as a baseline for classification,
comparison and analysis of these attributes.
Software measurement contributes to software
quality from various aspects, such as
understandability, complexity, reliability, testability
and maintainability, as well as performance and
productivity of software projects2,3.

Software measurement has become
essential for good software engineering. DeMarco
states the importance of measurement, as "You
can't control what you can't measure". There is no
standard definition of measurement for software
artifacts that is universally accepted6. Abreu7 defines
measurement as ̀ Measurement is the experimental
process in which, to precisely describe the entities
or events in real world, numbers or other symbols
are assigned to its attributes by using a given scale.
The result of the measurement is called measure.'
Another definition given by Fenton[8] 'Measurement
is the process by which numbers or symbols are
assigned to attributes of entities in the real world in
such a way as to describe them according to clearly
defined rules'. Thus, measurement contains
information about attributes of entities. An entity is
an object (such as a person, place, event etc.).
Entities are described by the characteristics that
are important to distinguish one entity from another.
An attribute is a feature or property of an entity.

The software industry is responding to the
demand for high-quality product by spending
resources to improve the quality of their product.
Periodic analysis and measurement of software
products throughout the life cycle are very important
to manage and improve the software quality. The
latest industry surveys indicate that more than 50
percent of a software project's budget is spent on
activities that are related to enhance quality of the
software9.

7Khaliq et al., Orient. J. Comp. Sci. & Technol., Vol. 3(1), 05-11 (2010)

Software measurement has become an
essential requirement for software development to
help to ensure the processes. The estimation of
measures may be the principal objective of the
experimental software engineering. Measuring
software quality is not a new theme, as it has been
investigated for years in software engineering
discipline. Despite this, asking a software developer
to measure the quality of a product, can sound and
probably in most of cases will sound like an unknown
or even a new problem. Since there is no clear
definition in what aspects of software quality should
be considered qualitative. It may be difficult to find
a suitable way to measure software quality and other
related aspects. About half of the software problems
are reportedly caused at requirements specification
level, about 25 percent or more are caused at the
design level and just a few are caused during coding.
Measures may also be used as an integral part of
the design process to assist software developers in
improving their product quality. In this regard, the
criteria that make it possible to measure positive
and negative elements of system design needs to
be identified. Another important issue is the use of
such measurement to improve the design process1.

Software Quality Models
Software Quality being a vague concept

cannot be embodied in standards. Typically, the way
we measure quality depends on the viewpoint we
take. This makes the direct assessment of quality
is very difficult. In order to better quantify quality,
researchers have developed indirect models that
attempt to measure software product quality by
using a set of quality attributes, characteristics and
metrics2,3. Till now there have been some quality
models, most of which are hierarchical models,
which are based on group of quality criteria,
associated with group of metrics. Almost all models
can be categorized into three kinds according to
the means by which the model is generated10, the
first is the theoretical model based on hypothesis
relations among variables. The second is data-driven
that are based on statistical analyses. The third is
the combined model in which intuition is used to
determine the basic type of the model and data
analysis is used to determine model's constants. In
most cases, the combined model is practically
adapted. From another perspective, the metric
model is also classified into process metrics models

and product metrics models. While process metrics
models deal with improving the process of software
development, product metrics models focus on
measuring the internal attributes in the software
product and relating them to product external
quality4. The following models are in use in software
industry:

Factor-Criteria-Metrics (FCM) Model
This has been generally accepted as a

basis for software measurement. The basic principle
of this model is that each attribute can be
decomposed into a set of factors which themselves
can be decomposed into a set of criteria. And these
criterion values can be assessed from a set of
software-related measurements, software metrics.

McCall model11,12

This is the most well known early model
based on FCM model, which was first introduced in
1976-7 by the US Air Force Electronic System
Decision (ESD), the Rome Air Development Center
(RADC), and general Electric (GE), with the aim to
improve and enhance the quality of product. This
model is used in the United States for military
purposes, space, and public domains. The basic
aim of McCall's quality model is to assess the
relationship among external quality factors and
product quality criteria.

Boehm model11,13

This model was introduced in 1978, added
some characteristics to McCall's model and
developed an improved quality model with the
emphasis on the maintainability of software product.
The proposed model was also able to evaluate the
software product with respect to the utility of
program. Upon analyzing the Boehm model one
sees that it begins with the software's general utility.
It looks at utility from various dimensions,
considering the types of user expected to work with
the system once it is delivered. General utility is
broken down into Portability, Utility and
Maintainability.

FURP Model11

The FURP model was proposed in 1987
by Robert Grady and Hewlett-Packard. The
characteristics is decomposes in two categories of
requirements namely functional requirements and

8 Khaliq et al., Orient. J. Comp. Sci. & Technol., Vol. 3(1), 05-11 (2010)

non-functional requirements. Functional
requirements are defined by input and expected
outputs, while non-functional includes usability,
reliability, performance and supportability. When the
FURPS model is used, two steps are considered:
setting priorities and defining quality attributes that
can be measured. Grady and Caswell note that
setting priorities is important given the implicit trade-
off, i.e. one quality characteristic can be obtained
at the expense of another.

ISO 9126 model11

This model is a derivation of McCall's
Model, was proposed in recent years. It defines
software quality as `the totality of features and
characteristic of a software product that bear on its
ability to satisfy stated or implied needs'. The model
proposes a set of six independent high-level quality
characteristics, which are defined as a set of
attributes of a software product by which its quality
is described and evaluated.

REBOOT (Reuse Based on Object Oriented
Technology)14

This was proposed as a general quality
model and reusability model based on the FCM
model. To arrive at a reasonable computation of
quality and reusability, a questionnaire was
distributed to software engineers in five European
countries and then adapted the requirements, the
software engineers considered as important
components as factors in their FCM model. All the
factors are cost-related, productivity-related, or
probability related. With the starting point of
decomposing an activity, which is counterpart of a
factor, into a subset of activities, a set of criteria of
this factor are then defined.

Dromey's Quality Model15

Geoff Dromey recently proposed a quality
framework for building product based quality
models, which is a methodology for the development
of quality models in a bottom-up fashion. This model
addresses some of the problems of the earlier
models such as the McCall's and IS09126. The
framework prescribes a methodology for the
development of quality models in a bottom-up
fashion, ensuring that the lower level details are well
specified and computable, the lack of which has
been a severe drawback of the previous models.

SATC Quality Model16,17

SATC(Software Assurance Technology
Center) has developed a software quality model for
quantitatively measurement of quality of the
software. These models have the goals to find the
stability in Requirements and Design phase[18]. the
SATC model defines a set of goals like
Requirements Quality, Product Quality,
Implementation Effectively and Testing Effectively.
The goals are then related to software product and
process attributes that allow indications of the
probability of success in meeting these four goals16.

QMOOD (Quality Model for Object Oriented
Design)19

This was proposed as a hierarchical model
used to assess object-oriented design quality[10].
It is a quality model for assessing high-level external
quality attributes such as reusability, functionality,
flexibility etc. of object-oriented designs based on
the internal properties of design components.
Jagdish Bansiya and Carl G Davis proposed this
model. In this model, tangible design properties
(both structural and functional) of object oriented
design components such as classes are used to
generate object oriented design metrics, which
evaluate the extent of the tangible properties in the
design components¹.

MQMOOD (Metric Based Quality Model for
Object Oriented design)20

The Dromey's generic quality model15 has
been used to develop MQMOOD for the
assessment of SATC's identified high-level quality
attributes(such as efficiency, complexity,
understandability, reusability and testability/
maintainability) in object oriented design[17]. The
object oriented design properties to the set of
SATC's have been evaluated using a suit of object
oriented design metrics.

Software Metrics
Software metrics are tools of

measurement. The term `metrics' is also frequently
used to mean a set of specific measurements taken
on a particular item or process. The IEEE Standard
Glossary of Software Engineering Terms defines
metrics as, "a quantitative measure of degree to
which a system, component, or process possesses
a given attribute". Software metrics are an attempt

9Khaliq et al., Orient. J. Comp. Sci. & Technol., Vol. 3(1), 05-11 (2010)

to quantify some aspects of a product generated
during a software project. Software metrics generally
categorized into three categories: product metrics,
process metrics and project metrics¹. The subjective
measurement of quality may assess by human
estimation, but software metrics are the mechanized
tools to assess the value of internal attributes of
quality in an objective manner.

Quality software depends on many factors
including process being used to develop the product,
the design and characteristics of implementation.
In order to improve quality of software, it is
necessary to identify the locations of bad design or
programming practices in software system. One way
to identify the problem area is to define the metrics.
Software metrics provide some confidence in the
software quality estimation as it relates directly to
reliability, maintainability, and adaptability, all of
which are essential requirements for quality. The
software metrics may define the success and failure
for a product, process or person in quantitative
manner. It may allow to identify and quantify the
improvement, lack of improvement or degradation
in product, process and person. The managerial and
technical decision can be made by software
metrics1,4,5. Some of the approaches have been
reviewed and described in brief, as follows:

SATC's Approach17,18

The metrics was proposed by SATC which
are supported by most literatures and Object
oriented tools. These metrics were based on
focusing the critical constructs of object oriented
design and may be used to evaluate the object
oriented design properties like methods, classes,
coupling and inheritance. The proposed metrics
focus on both the internal and external measures
of efficiency of an algorithm, machine resources
and psychological complexity factors that affects
the ability of programmer. SATC suggests three
traditional and six object oriented metrics.

Abreu's Approach21

The set MOOD (Metrics for Object
Oriented design) was introduced by Abreu. There
are six metrics was proposed in order to achieve
the basic goals of MOOD are as follows:
(i) to improve the object oriented design process

to get better maintainability.

(ii) to improve the object oriented estimation
process to achieve better resource
allocations.

The IEEE Computer Society has validated
the MOOD set on the basis of the framework
proposed by Kitchenham22.

Chidamber and Kemerer's Approch23

The Metrics for Object Oriented Software
Engineering (MOOSE) set was proposed by
Chidamber and Kemerer. The researchers have
been validated the set and have shown that the
MOOSE are useful quality indicators for predicting
fault-prone classes and maintenance effort. The set
consists six object oriented metrics.

Jagdish Bansiya and Carl Devis's Approch24

This was proposed a set
QMOOD++(Quality Metrics for Object Oriented
Development) as an automated tool that consists a
suite of over 30 object oriented metrics. The
essential features of the metrics that object oriented
development may be analyzed at both the system
and class level. The set QMOOD++ covers all
constructs used in the creation of an object oriented
system, so the conclusion that all object oriented
attributed need to be evaluated by these metrics1.

CONCLUSION

Every aspects of human life is affected by
the software, quality of Software is a necessary
factor for software industry as it may cause for
human life, time and budget. Periodic analysis and
measurement of software products throughout the
life cycle are very important to manage and improve
the software quality. Measures may also be used
as an integral part of the design process to assist
software developers in improving their product
quality. In this regard, the criteria that make it
possible to measure positive and negative elements
of system design needs to be identified. In order to
define quality, it is required to identify the important
aspects of quality. Measurement of software quality
after the completion of development work is no
longer needed but it is more important to monitor
and manage the quality of software when it is under
development. Such a task is the purpose of the
software quality models and software metrics.

10 Khaliq et al., Orient. J. Comp. Sci. & Technol., Vol. 3(1), 05-11 (2010)

Quality models may be used to provide early signs
of warning or of improvement so that timely action
may be planned and implemented. These software
quality metrics models must be used in the early

phases of development. The earlier a metrics model
can detect the signs of quality problems or
improvements, the more time is available for
proactive planning, and will be less expensive.

1. R A Khan, K Mustafa, S I Ahson, 'Software
Quality Concepts and Practices', Narosa
Publishing House Pvt. Ltd., 2006.

2. Khan R. A. & Mustafa K: A Survey of Object
Oriented Design Metrics, Proceedings,
National Conference on Information
Technology, Operations research and
Computing, April 10-12, 2004, Agra.

3. S. Afzal, Khan R. A. & Mustafa K.,
Assessment of Quality Contributor Attributes
- An object oriented software perspective,
Vol 4(11), pp. 35-40.

4. Pressman, R. S., Software Engineering: A
Practitioner's Approach, McGraw-Hill Book
Company, 2005.

5. Pankaj Jalote, 'An Integrated Approach to
Software Engineering', Narosa Publishing
House, Thired Edition, 2008.

6. Archer, C.; Stinson, M. "Object-Oriented
Software Measures", CMU/SEI-95-TR-002,
Carnegie Mellon University, Pittsburgh, PA,
EUA, Software Engineering Institute 1995.

7. Abreu. Brito F. and Carpuca, Rogerio,
"Candidate Metrics for Object Oriented
Software within a Taxonomy Framework.",
Proceeding of AQUIS'93, Venice, Italy,
October 1993; selected for reprint in the
Journal of Systems and Software, 23(1): 87-
96, (1994).

8. Fenton N. E., "Software Measurement: A
Necessary Scientific Basis", IEEE Software
Eng., 20(3), 199-206, (1994).

9. Massood Towhidnejad, Thomas B. Hilburn,
"Software qualityAcross the Curriculum",
Proceedings, 15`h Conference on Software
Engineering Education and Training, 2002
IEEE.

10. Conte S. D., Dunsmore H. F., Shen V. Y.
"Software Engineering Metrics and Models",
Menlo Park: Benjamin/Cummings, 1986.

REFERENCES

11. Maryoly Ortega , Maria A. Perez & Teresita
Rojas, Construction Of A Systemic Quality
Model For Evaluating A Software Product,
Software Quality Journal, 11:3, July 2003,
pp. 219-242. Kluwer Academic Publishers,
2003.

12. McCall, J. A., Richards, P. G., and Walters,
G. F. "Factors in Software Quality", Vols. I, II,
and III (NTIS AD(A-049 014/015/055),
Springfield: NTIS, 1977.

13. Boehm, B. W., Brown, J. R., Kaspar, H.,
Lipow, M., Macleod, G. J., and Merritt, M. J.,
"Characteristics of Software Quality",
Amsterdam: North-Holland, 1978.

14. Even-Andre Karlsson. Chichester, "Software
Reuse: A Holistic Approach -Measuring the
Effect of Reuse Chapter", New York: Wiley,
1995: 113-180.

15. Dromey, R. G. "A Model for Software Product
Quality", IEEE Transaction on Software
Engineering 21(2), Feb. 1995, p. 146-162.

16. Lawrence E. Hyatt and Linda H. Rosenberg,
"A Software Quality Model and Metrics for
Identifying Project Risks and Assessing
Software Quality".

17. Rosenberg Linda, "Software Quality Metrics
for Object Oriented System Environments",
A report of SATC's research on object
oriented metrics.

18. R A Khan, K Mustafa : A review on SATC
Research on OO Metrics, Proceedings of
National Conference on Software
Engineering Principles and
Practices(SEPP'04), CSED, TIET, Patiala, 5-
6 March 2004.

19. Bansiya Jagdish, "A Hierarchical Model for
object- oriented Design Quality Assessment",
IEEE Transaction on software engineering,
28(1), January 2002.

20. R A Khan, K Mustafa, "Metric Based Model

11Khaliq et al., Orient. J. Comp. Sci. & Technol., Vol. 3(1), 05-11 (2010)

for object oriented Design Quality
Assessment", Information Technology
Journal 4, 2005.

21. Fernando Brito e Abreu, "Design Metrics for
Object Oriented Software Systems",
ECOOP'95 Quantitative Methods Workshop
Aarhus, August 1995.

22. Kitchenham B., Fenton N., & Pfleeger, S. L,
"Towards a framework for software
measurement validation", IEEE Transaction

Software Engineering, vol. 21, no.12, pp. 929-
944, 1995.

23. Chidamber, S and Kemerer, C., "A Metrics
Suite for Object Oriented Design", IEEE
Transaction on Software Engineering, June
1994, pp. 476-492.

24. Bansiya Jagdish & Devis Carl, "Automated
Metrics and Object Oriented Development",
Dr. Dobb's Journal December 1997.

