
INTRODUCTION

Th main objective of shape optimization is
to find the shape which is optimal in the sense that
it minimizes a certain objective function while
satisfying the given constraints. Shape optimization
is complex in the sense that the shapes are
continuously changing during the optimization
process. Careful consideration has to be paid to
describe the changing boundary shape, to maintain
an adequate finite element mesh.

Analytical methods for solving shape
optimization problems have been used for a long
time. The first known attempt at developing a
mathematical formulation for shape optimization
dates back to Galileo in 1638, who found that
minimum weight cantilever is a parabolic beam. Use
of numerical methods for shape optimization
became main interest  of scientists in this field after
the invention of computers. In last 40 years a lot of
progresses have been made in this field. Most of
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ABSTRACT

In this study, shape optimisation of steel pedestals are attempted using neural network.
Considering different geometrical parameters, finite element analyses of pedestals are carried out.
Using these results, a back propagation neural network is trained.  Successfully trained networks is
further used for shape optimisation of newer problems. Thus optimised pedestals are further validated
with finite element analyses counterparts and found to be in close match.
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the shape optimization problems solved so far can
be classified into gradientbased and gradientless
methods. Both of these methods have their pros
and cons and selection of a particular method
depends upon the type and size of the problem,
number of design variables and convergence
required.

Durelli (1981) et al. adopted  a step-by-
step procedure for modifying hole boundaries in a
two  dimensional photoelastic model until the tensile
and compressive boundary stresses were
approximately constant. Mattheck (1990)  based on
the interesting observation that “living structures”
appear to be able to add material in region of high
stresses and to reduce material in region of low
stresses, proposed methodoligies  to bring about
an optimal shape that produces a constant von
Mises stress distribution on the free surface.
Hasengawa, (1992) proposed two gradientless
methods namely boundary changing methods, in
which co-ordinates are changed, and thickness
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changing methods, in which thickness is changed.
Jose (1990) and Sibal (1992) used this technique
to find optimal shape of the downstream side of
dams to eliminate tensile stress from the heel of
the dams. In these problems co-ordinates of the
nodes of the design points were varied in prescribed
directions. Pathak (2000) used design elements,
fuzzy set theory and artificial neural networks in a
gradientless method of shape optimisation. Zhixue
Wu (2005) presented an efficient gradientless shape
optimization approach for minimizing stress
concentration factor. Hsu (1993) developed a new
method for optimization called as ‘curvature function
method’. They solved various problems such as
cantilever beam, fillet and torque arm. Ghoddosian
(1998) extended curvature function method to find
optimum shape of shell structures and successfully
solved one circular and one spherical shell problems.
The pattern transformation method of Oda and
Yamazaki (1984) is a technique of transforming the
shape of the boundary based on the stress ratio in
the boundary finite elements. Umetani and Hirai
(1979) used stress ratio approach whereas Tada
and Seguchi (1981) considered strain energy ratios
for shape optimization. Sehgal, et al. (1999)
optimized bracket problem using Boundary Element
Method (BEM) and zero-order approach. In recent
years application of artificial intelligence based
techniques have taken an important place in
structural engineering and shape optimization is not
untouched to that. Most important among them is
evolutionary method, genetic algorithms (GA),
neural networks etc. Nicholas Ali (2003) reported
shape optimization of very large planer and space
problems using GA. The proposed clubbing of  FEA
and GA  finds lighter and reasonable structural
design. Zhang(2005) reported application of
meshless method and genetic algorithms for shape

Table 3:  Validation

S. Y (mm) X (mm) Stress (MPa)

No. FEM NNT Percent Error

1. 1880 700 94.37 97.95 3.79
2. 1916 650 95.06 97.84 2.92
3. 1953 600 97.26 97.39 0.13
4. 2171 600 107.11 108.37 1.18
5. 2110 700 108.14 112.75 4.26

Table 1: Training Patterns

S. Input Parameters Output

No. Stress (MPa) X (mm) Parameters
Y (mm)

1. 86.55 500 1500
2. 94.47 500 2000
3. 115.22 500 2500
4. 86.32 600 1500
5. 99.39 600 2000
6. 135.42 600 2500
7. 86.18 700 1500
8. 104.73 700 2000
9. 165.39 700 2500
10. 86.12 800 1500
11. 110.53 800 2000
12. 86.13 900 1500
13. 116.74 900 2000

Table 2: Testing Patterns

S.No. Stress (MPa) ‘X’ (mm)

1. 100 700
2. 100 650
3. 100 600
4. 110 600
5. 110 700
6. 130 700
7. 110 650
8. 100 750

optimization of 2D problems. In this remeshing is
avoided and particularly the computation burden
and errors caused by sensitivity analysis are
eliminated completely.
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Fig. 1: Block diagram representation of nervous system

Fig. 3: A single processing unitFig. 2: A typical biological neuron

Fig. 5: Neural networkFig. 4: The sigmoid function

From the literature survey it is observed
that shape optimization is one of the most complex
problem which requires multidisciplinary knowledge
like Numerical Mathematics; Finite Element Method
(FEM); Computer Aided Design(CAD) etc. Since
most of the design engineers are not well versed in
these areas, shape optimization is still beyond their
reach. To overcome this difficulty, to some extent,
application of neural network is proposed in this
study. The stress obtained from finite element
analyses are used for training of neural network.
Successfully trained network is used for prediction

of optimal shapes. Several pedestals are designed
using the approach and results are compared with
finite element analysis results and both are found
to be in good match.

Artificial neural network
Artificial neural network attempts to imitate

the learning activities of the brain. The human
nervous system may be viewed as a three-stage
system as depicted in the block diagram (Fig.1).
Central to the system is the brain, represented by
neural (nerve) net, which continually receives
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Fig. 6: FE Model of Column Fig. 7: Contour of σσσσσy (MPa)

information, perceives it and make appropriate
decisions. To sets of arrow are shown in the figure,
those pointing from left to right indicate the forward
transmission of information-bearing signals through
the system. The arrows pointing from right to left
signify the presence of feedback in the system.The
receptors convert stimuli from the human body or
external environment into electrical impulses that
convey information to the neural net(brain). The
effectors convert electrical impulses generated by
the neural net into discernible responses as system
outputs.  The human  brain  is  composed  of
approximately  1011 neurons (nerve  cells)  of
different  types. In  a  typical  neuron, we  can  find
the  nucleus, where  the  connections with  other
neurons  are  made  through  a  network  of  fibers
called  dendrites. Extending  out  from  the  nucleus
is  the  axon, which  transmits , by  means  of  a
complex  chemical  process, electric  potentials  to

the  neurons  with  which  the  axon  is  connected
to (Fig.2). When the signals  received by the neuron
equal or surpass  their  threshold, it “triggers”,
sending  the  axon  an  electric  signal  of  constant
level  and  duration. In this way the message is
transferred from one neuron to the other.

In  an  artificial  neural  network (ANN),
the  artificial  neuron  or  the  processing  unit  may
have  several  input  paths  corresponding  to  the
dendrites. The units combine usually, by  a  simple
summation, the  weighted  values  of  these  paths
(Fig.3). The weighted value is  passed  to  the
neuron,  where  it  is  modified  by  threshold  function
such  as  sigmoid  function (Fig.4). The modified
value is directly presented  to  the next  neuron. In
Fig.5 a 3-4-2 feed forward back propagation artificial
neural network is shown. The connections between
various neurons are strengthened or weakened
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Fig. 9: Finite Element Model

Fig. 8: Design Variables
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according to the experiences obtained during the
training. The  algorithm  for    training  the  back
propagation neural network  can  be  explained  in
the  following  steps-

Step 1
Select  the  number of  hidden  layers,

number  of  iterations, tolerance  of  the  mean
square  error and  initialize  the  weights  and  bias
functions.

Step 2
Present  the normalized  input –output

pattern  sets to the network. At  each  node  of  the
network  except  the  nodes  on  input  layer,
calculate  the  weighted  sum  of  the  inputs, add
bias  and  apply  sigmoid  function

Step 3
Calculate  total  mean error . If  error  is

less  than  permissible  limit,  the  training  process
is  stopped. Otherwise,

Step4
Change the weights and bias values based

on generalized delta rule and repeat step 2.
The mathematical formulations of training the
network can be found in Ref.4.

Methodology
A pedestal of height 3000mm and and

width of  top and bottom surface 300mm and
500mm is shown in Fig.6. Let P be the concentrated
load at the top surface of the pedestal. Thickness
of the pedestal is 150mm. Let X and Y be  the width
and depth of the pedestal respectively. Various
combinations of these geometrical parameters are
framed and analysed using FEM. Results for these
cases are recorded in terms of peak bending stress.
These data are used for training of the neural
network. Successfully trained network is employed
for shape optimisation of newer problems.

Finite Element Analysis
In this study a pedestal of width at top and

bottom surface as 300 mm and 500 mm and depth
3000 mm is considered. Various combinations of X

and Y are accounted. Considering these variations
in geometrical parameters, 13 cases are framed
(Table 1). Nine noded Lagrangian element is used
for Finite Element modelling .The pedestal is divided
into 50 elements making up 231 nodes (Fig.2). An
automatic mesh generator has been developed to
generate finite element mesh for these cases.
Young’s Modulus of 2x10 5  MPa and Poisson’s ratio
0.3 is accounted. The stress contour is shown in
Fig. 7. The design variables are shown in Fig. 8 and
Fig. 9 respectively. Considering these data, linear
elastic finite element analyses of the 13 cases are
carried out and maximum value of bending stresses
is noted for each case (Table 1). The finite element
analysis results are given in Table 1.

Application of Neural Network
Stresses obtained from finite element

analyses, are used for training the neural network.
For this a 2-3-1 size, back propagation neural
network is adopted. The input parameters are stress
and ‘X’ and output parameter ís ‘Y’.It took 543268
epochs to converge to an error tolerance limit of
0.01. The trained network is used for predicting
geometrical parameters for new testing patterns
given in Table 2. To validate the neural network
predictions finite element analyses considering
these data is carried out. The stress obtained from
FEA and corresponding percentage error are given
in Table 3. Maximum error in stress is 4.26 which is
quite acceptable. This may be acceptable at first
hand design. Based on the requirement, it may be
further improved using more rigorous approaches.

CONCLUSION

In this study, an application of neural
network is demonstrated on shape optimization
problems of pedestals. It overcomes some of the
drawbacks of conventional approaches of shape
optimisation, like high computational time and large
memory requirement. It is observed that proposed
approach works efficiently for optimizing shape
accounting stress criteria. It offers a handy tool for
design engineers who are not familiar with the
theoretical and computational aspects of shape
optimization.
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