
INTRODUCTION

The design and evolution of programming
languages is one of the most important areas of
computer science. People sought to formalize
methods for constructing correct, efficient and easily
modified programs. Languages have continued to
evolve in order to support their ever increasing
usage and support new requirements. The history
is full of with examples of improvements in our
approach to building software, from the introduction
of high-level languages, structured programming,
and the object-oriented approach. Today, object-
oriented is the leading programming paradigm for
software development. One of the major aims of
object-oriented development is to organize the data
of an application and its associated methods into
coherent entities to encourage software reuse1.
However, object-oriented paradigm is not able to

Oriental Journal of Computer Science & Technology Vol. 2(2), 113-118 (2009)

Modularizing the cross cutting concerns
through aspect-oriented programming

SYED IMTIYAZ HASSAN¹ and S.A.M. RIZVI²

¹Department of Computer Science, Jamia Hamdard, New Delhi (India).
²Department of Computer Science, Jamia Millia Islamia, New Delhi (India).

(Received: September 30, 2009; Accepted: November 09, 2009)

ABSTRACT

No one process, technique, language, or platform is good for all situations. Object oriented is
not an exception. There are many situations, which the traditional Object-Oriented Programming (OOP)
can’t deal and implement as it should be. One of them is cross-cutting concerns like logging or security
that affects multiple implementation modules. Using object-oriented techniques cross-cutting concerns
are difficult to map in a single class and hence they are scattered throughout the code. Due to scattering
resulting systems are harder to design, understand, implement, and evolve. Aspect-oriented
programming (AOP) is one of the ideas that can be used to modularize the crosscutting concerns
better than previous methodologies. The present paper discusses the problems caused by crosscutting
concerns and then shows how AOP can solve the said problem with the help of a sample code
implemented in AspectJ. This paper also demonstrates how one can use Eclipse IDE to implement
AOP.

Key words: AOP, Cross-Cutting Concerns, Aspect, Aspect, OO.

kinds of concerns, including business logic,
performance, data persistence, logging and
debugging, authentication, security, multithread
safety, error checking, and so on. Aspect-Oriented
Programming (AOP)2,3, which represents one facet
of Aspect-Oriented Software Development (AOSD)
is the new entrant that offers a solution to of the
said problem that has plagued software developers
for years. AOP introduces the notion of Aspects,
and shows how we can take crosscutting concerns
out of modules and place them in a centralized
place. The person most commonly associated with
AOP is Gregor Kiczales who worked on AOP from
1984 to 1999 at the Xerox Palo Alto Research
Center (PARC) and was a leader in developing
implementations of it2.

AOP is not replacement of OOP, but it
complements OOP by providing another way of
thinking about program structure. The key unit of

manage a complex program effectively, when it
contains Crosscutting concerns and Code
Scattering. A typical system may consist of several

114 Hassan & Rizvi, Orient. J. Comp. Sci. & Technol., Vol. 2(2), 113-118 (2009)

modularity in OOP is the class, whereas in AOP the
unit of modularity is the aspect. Aspects enable the
modularization of concerns that cut across multiple
types and objects. AspectJ4,5 is language for AOP
in Java whereas Spring framework6 for Java provides
different API for implementing AOP.

AOP concepts
Some of the concepts related to AOP is

discussed briefly for understanding of readers.

Aspect
An aspect is modular units that cross-cut

the structure of other units. Aspects are elements
such as security policies and synchronization,
optimization, communication or integrity rules that
crosscut traditional module boundaries7. Transaction
management is a good example of a crosscutting
concern in J2EE applications8. An aspect is similar
to a class by having a type, it can extend classes
and other aspects, and it can be abstract or concrete
and have fields, methods, and types as members.
It encapsulates behaviours that affect multiple
classes into reusable modules.

Join point
A point in the program flow where

something happens is called join point. AOP
languages use Join points to modularize
crosscutting concerns. The join points are well-
defined points in the execution of a program like
method calls, field access, conditional checks, loop
beginnings, assignments and object constructions.
Advice: Advice is an action taken by an aspect at a
particular join point. Different types of advice include
around, before and after (returning, throwing, finally)
advice. Before advice is an advice that executes
before a join point, but which does not have the
ability to prevent execution flow proceeding to the
join point (unless it throws an exception). An after
returning advice is the advice to be executed after
a join point completes normally: for example, if a
method returns without throwing an exception. After
throwing advice is to be executed if a method exits
by throwing an exception. After finally advice is to
be executed regardless of the means by which a
join point exits (normal or exceptional return).

Around advice is an advice that surrounds
a join point such as a method invocation. This is the
most powerful kind of advice. Around advice can

perform custom behaviour before and after the
method invocation. It is also responsible for choosing
whether to proceed to the join point or to shortcut
the advised method execution by returning its own
return value or throwing an exception. Around advice
is the most general kind of advice.

Pointcut
A Pointcut is the predicate that matches

join points. Advice is associated with a pointcut
expression and runs at any join point matched by
the pointcut (for example, the execution of a method
with a certain name). The concept of join points as
matched by pointcut expressions is central to AOP.
Weaving: The process of combining aspect and
object models to create the desired runtime
behaviour is called weaving. This can be done at
compile time, load time, or at runtime. In compile-
time weaving, the weaver is a program that, prior
to any execution, produces an application code in
which the classes are extended by the aspects.
AspectJ is the most well-known compile-time aspect
weaver. A compile-time weaver is very similar to a
compiler and is often referred to as an aspect
compiler or even as a compiler. Whereas in run-
time weaving, the distinction between application
objects and aspects is clearly established during
the execution. A run-time weaver executes either
the application code or the aspect code, depending
on the defined weaving directives. The process of
weaving aspects at run time can be compared to
maintaining a relationship between a set of
application objects and a set of aspect instances.
The advantage of run-time weaving is that the
relationships between objects and aspects can be
dynamically managed.

Development steps of AOP
AOP involves three distinct development

steps: Aspectual decomposition, Concern
implementation and Aspectual recomposition.
Aspectual decomposition decomposes the
requirements to identify crosscutting and common
concerns. Module-level concerns are separated
from crosscutting system-level concerns. Concern
implementation implements each concern
separately. While in Aspectual recompositions step,
an aspect integrator specifies recomposition rules
by creating modularization units — aspects. The
recomposition process, also known as weaving or

115Hassan & Rizvi, Orient. J. Comp. Sci. & Technol., Vol. 2(2), 113-118 (2009)

integrating, uses this information to compose the
final system.

Advantages of AOP
The advantages of AOP are
Cleaner responsibilities of the individual module
AOP allow a module to take responsibility only for
its core concern; a module is no longer liable for
other crosscutting concerns. For example, a module
accessing a database is no longer responsible for
pooling database connections as well. This results
in cleaner assignments of responsibilities, leading
to improved traceability.

Higher modularization
AOP provides a mechanism to address

each concern separately with minimal coupling.
These results in modularized implementation even
in the presence of crosscutting concerns. Such
implementation results in a system with much less
duplicated code. Because the implementation of
each concern is separate, it also helps avoid code
clutter. Modularized implementation results in an
easier-to understand and easier-to-maintain
system.

Easier system evolution
AOP modularizes the individual aspects

and makes core modules oblivious to the aspects.
Adding a new functionality is now a matter of
including a new aspect and requires no change to
the core modules. Further, when we add a new core
module to the system, the existing aspects crosscut
it, helping to create a coherent evolution. The overall
effect is a faster response to new requirements.

More code reuse
The key to greater code reuse is a more

loosely coupled implementation. Because AOP
implements each aspect as a separate module,
each module is more loosely coupled than
equivalent conventional implementations. In
particular, core modules aren’t aware of each other-
only the weaving rule specification modules are
aware of any coupling. By simply changing the
weaving specification instead of multiple core
modules, we can change the system configuration.
For example, a database module can be used with
a different logging implementation without change
to either of the modules.

Improved time-to-market
Late binding of design decisions allows a

much faster design cycle. Cleaner separation of
responsibilities allows better matching of the module
to the developer’s skills, leading to improved
productivity. More code reuse leads to reduced
development time. Easier evolution allows a quicker
response to new requirements. All of these lead to
systems that are faster to develop and deploy.

Reduced costs of feature implementation
By avoiding the cost of modifying many

modules to implement a crosscutting concern, AOP
make it cheaper to implement the crosscutting
feature. By allowing each implementer to focus more
on the concern of the module and make the most
of his or her expertise, the cost of the core
requirement’s implementation is also reduced. The
end effect is a cheaper overall feature
implementation.

Example
The code snippet 1 is used to model a case

depicted in Figure 1 using Aspect.

Two figure elements Point and Line are
considered here that can be moved in a plane. Since
moveBy() and set..() methods are used whether a
Point or a Line is moved, these methods are
considered for pointcut (refer code snippet 1).
class Line {
 privatePoint p1, p2;
 Point getP1() {
 return p1;
 }
 Point getP2() {
 return p2;
 }
 void setP1(Point p1) {
 this.p1 = p1;Display.update(this);
 }
 void setP2(Point p2) {
 this.p2 = p2;Display.update(this);
 }
 void moveBy(intdx, intdy) {
 …
 }
}

116 Hassan & Rizvi, Orient. J. Comp. Sci. & Technol., Vol. 2(2), 113-118 (2009)

Fig. 1: Line and Point class

Fig. 2: Creating an AspectJ project Fig. 3: Creating a new Java Class

class Point{
 privateintx = 0, y = 0;
 int getX() {
 return x;
 }
 int getY() {
 return y;
 }
 void setX(int x) {
 this.x= x;Display.update(this);
 }
 void setY(int y) {
 this.y= y;Display.update(this);

 }
 voidmoveBy(intdx, intdy) {
 …
 }
}

Aspect DisplayUpdating{
 pointcut move(FigureElementfigElt):target(figElt)
&&
 (call(voidFigureElement.moveBy(int, int)
 ||call(voidLine.setP1(Point))
 ||call(voidLine.setP2(Point))
 ||call(voidPoint.setX(int))
 ||call(voidPoint.setY(int)));
 after(FigureElementfe) returning:
 move(fe){Display.update(fe);
 }
}
Code snippet 1: Demonstrating Aspect

Using Eclipse for AspectJ
In this section, creation of a new AspectJ

project and add a package and a Java class is
discussed. A very simple application has been

117Hassan & Rizvi, Orient. J. Comp. Sci. & Technol., Vol. 2(2), 113-118 (2009)

wizard. Type “helloworld” in the name field and
click finish.

´ Select the package that you just created in
the package explorer then select File > New
> Class.... to open the New Java Class
wizard. Type “Hello” in the name field, select
the option to allow Eclipse to create a main
method and click finish (refer Figure 3).

´ Type the following into your new class.
public static void main(String[] args) {
 sayHello();
}
public static void sayHello() {
 System.out.print(“Hello”);
}

 Save the file.
To create a new aspect and to add a

pointcut do the following.
´ In the Package Explorer view, select the

helloworld package. From the package’s
context menu, select New > Aspect.

´ Make sure that Hello World appears in the
Source Folder field and that helloworld
appears in the Package field. In the Name
field, type World. Click Finish to create the
new aspect (refer Figure 4).

´ The new file is opened in the editor. It
contains the new aspect, the constructor and
comments.

´ Change the body of the aspect to the
following:

public aspect World {
 pointcut greeting() : execution(*
Hello.sayHello(..));
 after() returning() : greeting() {
 System.out.println(“ World!”);
 }
}
Save the file.

To run the AspectJ programs do the
following:
´ Right click on Hello.java in the Package
Explorer and select Java Application from the
cascading Run menu. This will launch the selected
class as a local Java application. Note that unless
you need to run a main method that is in an aspect
or use an aspectpath you do not need to use the
Run > AspectJ/Java Application option.
´ Notice that the program has finished

Fig. 4: Creating a new Pointcut

Fig. 5: One possible output of Hello World

demonstrated here.
´ Inside Eclipse select the menu item File >

New > Project.... to open the New Project
wizard.

´ Select AspectJ Project then click Next. On
the next page, type “Hello World” in the
Project name field and click Finish (refer
Figure 2).

The Java perspective opens inside the
workbench with the new AspectJ project in
the Package Explorer.

´ Select the “Hello World” project in the
package explorer then select File > New >
Package.... to open the New Java Package

118 Hassan & Rizvi, Orient. J. Comp. Sci. & Technol., Vol. 2(2), 113-118 (2009)

running and the following message has appeared
in the console (refer Figure 5):

CONCLUSION

AOP addresses a problem space that
object-oriented and other procedural languages
have never been able to deal with. The key difference
between AOP and other approaches is that AOP
provides component and aspect languages with
different abstraction and composition mechanisms.
A special language processor called an aspect
weaver is used to coordinate the co-composition of
the aspects and components. Grady Booch

describes aspect-oriented programming as one of
three movements that collectively mark the
beginning of a fundamental shift in the way software
is designed and written. While this paradigm is still
relatively new, it seems promising and perhaps given
time will replace object-oriented paradigm. The
present paper demonstrated a case fit for AOP and
implemented it using AspectJ to modularize the
cross-cutting concerns. This paper also guided the
reader in using Eclipse for AOP.

REFERENCES

1. Booch Grady, “Object-Oriented Analysis and

developerworks/rational/library/2782.html
3. Kiczales G., J. Lamping, A. Mendhekar, C.

Maeda, C. Videira Lopes, J.-M. Loingtier, and
J. Irwin, ‘‘Aspect-Oriented Programming,’’ in
proc. of the 11th European Conference on
Object-Oriented Computing (ECOOP’97),
Jyva¨skyla¨, Finland, June 9–13 (1997).
Lecture Notes on Computer Science, Vol.
1241, Springer-Verlag, New York 200-242
(1997).

4. Pahlsson N., “Aspect-Oriented Programming-
An Introduction to Aspect-Oriented
Programming and AspectJ”, Report for
Software Engineering, University of Kalmar,
SWEDEN (2002).

5. Kiczales G., E. Hilsdale, J. Hugunin, M.
Kersten, J. Palm, and W. G. Griswold, ‘‘An
Overview of AspectJ,’’ in proc. of the 15th
European Conference on Object-Oriented
Programming (ECOOP 2001), Budapest,

Design with Applications”, 2nd Edition, Addison-Wesley Object Technology Series.
2. Pollice Gary, “A look at aspect-oriented programming”, [Online]. Available: http://www-106.ibm.com/

Hungary, June 18–22, 2001, Lecture Notes
on Computer Science, Vol. 2072, Springer-
Verlag, New York 327-353 (2001).

6. Johnson Rod, Juergen Hoeller, Alef
Arendsen, Thomas Risberg, Colin
Sampaleanu, “Professional Java
Development with the Spring Framework”,
Wrox publication, JulyISBN: 978-0-7645-
7483-2, 1-28 (2005).

7. Booch Grady, “Through the Looking Glass”,
[Online]. Available: http://www.ddj.com/
architect/184414752.

8. Pawlak R. et al., “Foundations of AOP for
J2EE Development”, Apress 1-23 (2005).

