
INTRODUCTION

Many physical problems in science and
engineering when formulated mathematically gives
rise to Partial Differential Equations (PDE's). The
study of PDE's is fundamental area of Mathematics
which links important strands of pure Mathematics
to applied and Computational Mathematics. PDE's
form the governing equations that the field variable
must satisfy for equilibrium and compatibility
conditions of solid or structural system.
Unfortunately, closed analytical solutions can be
found only in very special circumstances, and these
are mostly of limited theoretical and practical
interest. Thus, scientists and mathematicians have
naturally been led to seek techniques for the
approximation of solutions. Indeed, the advent of
digital computers has stimulated the incarnation of
Computational Mathematics, much of which is
concerned with the construction and mathematical
analysis of numerical algorithms for the approximate
solution of PDE's. The most powerful and generally
applicable algorithms for the approximate solution
of partial differential equations rely on the concept
of discr imination,  whereby the PDE under

Oriental Journal of Computer Science & Technology Vol. 2(1), 81-86 (2009)

A Neuro-finite Element Analysis of
Partial Differential Equations of Solid Mechanics

SANGEETA YADAV¹, K.K. PATHAK² and RAJESH SHRIVASTAVA³

¹Barkatullah University, Bhopal - 462 003 (India).
²Advanced Material and Processes Reasearch Institue (CSIR) Bhopal - 462 026 (India).

³Government Science and Arts College, Benazir, Bhopal - 462 003 (India).

(Received: March 05, 2009; Accepted: May 14, 2009)

ABSTRACT

Numerical analysis of Partial Differential Equations (PDE's) of the solid mechanics using Finite
Element Method (FEM) is very popular. One issue which is haunting the finite element solution is the
computer time. Finite Element Analysis (FEA) using fine mesh and large number of nodes consumes
lot of solution time. To overcome this difficulty, a hybrid Neuro-FEM is proposed. FEM solutions
considering coarse mesh is used for training neural networks which is further employed for finer
predictions. The proposed methodology is successfully employed on a cantilever beam problem.
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consideration is replaced by a finite-dimensional
problem. The transition from the partial differential
equation to the discrete model is a non-trivial
mathematical problem, and the selection of an
appropriate finite-dimensional representation is
rarely a matter of arbitrary choice: physical
properties behind the mathematical model (such
as energy and mass conservation, positivity, total-
variation-boundedness, dispersion and dissipation)
have to be borne in mind, as well as issues of
resolution of relevant scales, complete and
guaranteed control of the discrimination error, in
addition to concerns about the efficiency and
reliability of the resulting algorithm. The study of
these mathematical questions represents the focus
of the field of Numerical Analyses of Par tial
Differential Equations.

Zohar Yosibash (2000) addressed a
general method based on the modified Steklov
formulation for computing the eigen-pairs and a dual
weak formulation for extracting the amplitudes
numerically using the p-version of FEM. Hourman
Borouchaki and Paul Louis George (2001) proposed
a method to complete meshes conforming to a pre-
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specified size map using advancing - front combined
method for defining the field points and connected
using optimization technique. Leonid V.Tasap et al.,
(2002) proposed a new general framework for
application of Nonlinear FEM to non rigid motion
analysis. Patra et al., (2003) proposed adaptive finite
element methods in which both grid size 'h' and
local polynomial 'p' are dynamically altered, are very
effective discretization schemes for the numerical
solution of a large class of partial differential
equations. Phillip Frauenfelder, Christoph Schwab
and Radu Alexander Todor (2004) described a
deterministic finite element (FE) solution algorithm
for a stochastic elliptic boundary value problems
whose coefficients are assumed to be random fields
with finite second moments and known piece wise
smooth two point spatial correlation coefficient. J.J.
del Coz Diaz (2006) determined the distribution of
strains and stresses throughout a sheet cover
known as "umbrella" due to the dead and alive loads
taking into account large displacements by FEM.
Irfan Anjum et al. (2006) carried out Numerical
Analysis of heat transfer by convection, conduction
and radiation in a saturated porous medium
enclosed in a square cavity using a thermal non-
equilibrium model. The governing Partial Differential
Equation were non-dimensionalised and solved
numerically using FEM. Ladislav Musil (2006) dealt
with numerical simulation of the dynamic
phenomena in an electromagnetic feeder of molten
zinc. The mathematical model consists of one Partial
Differential Equation (PDE) describing distribution
of magnetic fields for various levels of zinc and a
system of nonlinear ordinary differential equation.

Computations are carried out by FEM. Gudur and
Dixit (2006) used neural networks for predicting the
velocity field and location of neural point. The
procedure provides highly accurate solution with
reduced computational time and is suitable for online
control or optimization. Choubey et al., (2006)
analysed the effect of cracks on natural frequencies
in two vessel structures with the help of FEM.
Natural frequencies and mode shapes were
analysed using Artificial Neural Network (ANN) and
it was found that the reduction in natural frequencies
depends upon mode shapes of structures. Rougui
et al., (2007) proposed an esy method for
determining the shell non-linear mode shapes with
their corresponding amplitude dependent non-linear
frequencies by minimisation of the energy functional
with respect to basic function contr ibution
coefficients which in turn leads to simple non-linear
multi modal equation.

Although huge amount of literature are
available on finite element applications, the major
problem which haunts is the computational time.
Computer time goes up vigorously with mesh
refinement and it will eventually need more primary
and secondary memories. To address this issue of
finite element computations, a neuro FEM is
proposed in this study. Results of the finite element
computations considering coarse mesh is used for
training the neural networks. Successfully trained
networks are further used for computation of field
variables at interior locations. The proposed neuro-
FEM methodology is successfully verified for
displacement computations in a cantilever beam.

Table 1: Computational Results

Node X Displacement (mm) Y Displacement (mm)

Neuro-FEM FEM Relative Error Neuro-FEM FEM Relative Error

36 1.356 1.440 0.058 -2.669 -2.660 0.003
55 -1.974 -1.970 0.002 -4.863 -5.240 0.072
76 2.740 2.740 0.000 -10.882 -11.200 0.028
106 3.496 3.490 0.002 -20715 -20.700 0.001
116 3.691 3.690 0.000 -24.372 -24.300 0.003
165 -4.295 -4.320 0.006 -42.387 -42.500 0.003
195 -4.490 -4.490 0.000 -55.751 -55.800 0.001
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Finite Element Method
Finite element analysis is a fairly recent

technique of numerical computations of PDEs. The
method has wide application and enjoys extensive
utilization in the structural, thermal and fluid analysis
areas. The finite element method is comprised of
three major phases: (1) pre-processing, in which
the analyst develops a finite element mesh to divide
the subject geometry into sub-domains for
mathematical analysis, and applies material
properties and boundary conditions, (2) solution,
during which the program derives the governing
matrix equations from the model and solves for the
primary quantities, and (3) post-processing, in which
the analyst checks the validity of the solution,
examines the values of field quantities such as
displacements and derives and examines additional
quantities such as stresses. The governing equation
of solid mechanics are:

along with the boundary conditions:

where T is the traction and l, m and n are the
direction cosines.

In order to solve above equations using
FEM, given domain is first descretized into element
which are connected at nodes (Zienkiewicz and
Taylor, 1991). Considering the virtual principal and
applying variational principle, the problem is reduced
to following to following algebraic equations-

[K] {∆} = {F}

where K is global stiffness matrix, F and ∆ are the

force and displacement vectors. In order to obtain
the nodal displacement stiffness matrix need to be
inverted as follows:

{∆} = [K]-1 {F}

The major computational steps of FEM are
shown in Fig. 1 (a). The matrix inversion consumes
most of the time of the finite element analysis. If N
is the number of nodes then, for two dimensional
analysis, the size of K will be (2N X 2N). It is apparent
that there will be considerable increase in the
computational effort as the FE model becomes finer.

Fig. 1: Flow diagrams (a) FEM (b) Neuro FEM

Artificial Neural Network
Artificial neural network attempts to imitate

the learning activities of the brain. The human brain
is composed of approximately 10" neurons (nerve
cells) of different types. In a typical neuron, we can
find the nucleus, where the connections with other
neurons are made through a network of fibers called
dendrites. Extending out from the nucleus is the
axon, which transmits, by means of a complex
chemical process, electric potentials to the neurons
with which the axon is connected to (Fig. 2). When
the signals received by the neuron equal or surpass
their threshold, it "triggers", sending the axon an
electric signal of constant level and duration. In this
way the message from one neuron to the other
neuron is transmitted.

In an artificial neural network (ANN), the
artificial neuron or the processing unit may have
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several input paths corresponding to the dendrites.
The units combine usually, by a simple summation,
the weighted values of these paths (Fig. 2). The
weighted value is passed to the neuron, where it is
modified by threshold function. The modified value
is directly presented to the next neuron. In Fig. 4 a
3-4-2 feed forward back propagation artificial neural
network is shown.  The connections between various
neurons are strengthened or weakened according
to the experiences obtained during training.

Neuro-finite Element Method
In order to enhance the computational

efficiency of FEM, artificial neural network are
employed in this study. ANN can help in predicting
displacement of finer mesh from coarse mesh which
thereby overcomes the major difficulties of FEM like
memory requirements and computational time.
Since computation time is directly related to mesh
size, the proposed approach is bound to reduce
the computational time. In Fig. 1 (b) major
computational steps of the proposed Neuro-FEM
are shown. The results of coarse Finite Element
Mesh is used for training of neural network.
Successfully trained network can predict the field
variable in the given domain.

Application
A cantilever beam of 1500 mm span, 300m

depth and150m width, shown in Fig. 5, is considered
for analysis purpose. It is loaded with a tip load of
1000 N. The beam is subdivided into two meshes,
coarse and fine as shown in Fig. 6 and 7. Nine
nodded Lagrangean elements are used for FE
modeling. The coarse mesh has 10 elements and
63 nodes and finer mesh has 40 elements and 205
nodes. The material properties adopted for finite

Fig. 3: A Single Processing Unit

Fig. 4: Artificial Neuron Network

Fig. 5: Cantilever Beam

Fig. 7: Fine Mesh

Fig. 6: Coarse Mesh

Fig. 3: Biological Neuron
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analyses are: Young's Modulus as 2x105 MPa and
Poisson's ratio as 0.3. The X and Y displacements
obtained from finite element analysis using the
coarse mesh are used for training the neural
network. For this a back propagation neural network
of size 2-4-2 is used. Further, finite element analysis
is carried out considering fine mesh. The
displacement results are verified at some of the
randomly selected nodes of the fine mesh and
compared with the neural network predictions at
same points. These results are tabulated in Table 1
and graphically shown in Fig. 8 and 9. It can be
observed that both are in good match. The

maximum relative error in X and Y displacements
are 0.58 mm and 0.028 mm.

CONCLUSION

In this study, a Neuro-FEM is proposed
for numerical solution of par tial differential
equations. It overcomes some of the drawbacks of
FEM like high computational time and large memory
requirement. The method is shown to be working
efficiently for displacement predictions in a cantilever
beam. Even old computers with low memories can
be used effectively using proposed approach.

Fig. 8: Displacement Comparison (uy)

Fig. 9: Displacement Comparison (uy)
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