
INTRODUCTION

The science of encrypting and decrypting
messages by using mathematic to achieve
information secrecy is Cryptography which enables
us to store or transmit the sensitive information
via an insecure channel (i.e. internet) that can not
be read and understood by anyone except the
intended recipient. A simple cryptosystem consists
of a plaintext, cipher text, an encryption key,
encryption algorithm, a decryption key and
decryption algorithm as shown in Fig. 1.

There are two general forms of
cryptosystems: symmetric (secret-key) and
asymmetric (public-key) cryptosystems.

In the symmetr ic cryptosystem, the
encryption and decryption keys are the same and
the entity who generates the key must share the
encryption key with the entity that will be able to
decrypt the encrypted message; the security of
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the cryptosystem relies on keeping the encryption
key secret. Suppose x as plain text, y as cipher
text and k as the encrypting and decrypting key (a
symmetric key), the sender will produce the
cryptogram y = Ek(x) that is transmitted through
the insecure channel to the receiver that decrypts
the message and deduce the original plaintext x =
Dk(y) = Dk ( Ek(x) ). The disadvantage of this
cryptosystem is the requirement for providing a
secure channel for transmitting the shared key. In
public-key cryptosystem, the encryption and
decryption use different keys and there is no need
for encryption key to be kept secret and the entity
who will receive the cipher text is able to deduce
the message by corresponding decryption key;
there is no computational way of obtaining
decryption key from the encryption key.

The RSA
The most popular public-key

cryptosystem is the RSA, named for its creators:
Rivest, Shamir and Adleman¹ proposed in 1977
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that can be used for both encryption and digital
signatures in the literature. Since then several
public-key systems have been proposed2,6 that their
security relies on the hard computational
problems3,6. The RSA cryptography is based on the
notion of one-way trapdoor function2,7, gets its
security from the difficulty of factoring integer
numbers. For implementing an RSA cryptosystem,
the generation of two keys are needed; first of all
two large prime numbers p, q are chosen8, 9. (This
can be done by Monte-Carlo prime number finding
algorithm), then their product and the
Euler function  will be
computed. The next step is to find e and d. A
random integer number e<  is chosen such
that gcd (e, )=1, then the Extended Euclid
Algorithm is used to find the integer decryption key
d from . For the encryption
process the sender will encrypt the confidential

message with the public key e in the following form
of a modular exponentiation:

And for the decryption process the
receiver will decrypt the encrypted message by the
decryption key d again in the form of a modular
exponentiation:

Any adversary knows the public keys pairs
(N, e) and the structure of the system and is familiar
with a modular exponentiation equation. The most
well known attacks against the RSA cryptosystem
is to factor N to its prime integer numbers that
computationally is impossible; it is also possible to
attack the RSA by guessing the value of Euler

Fig. 1: A simple cryptosystem diagram

Fig. 2: Feedforward Neural Network Scheme
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function  that is not easier

than factoring N10,11 Though it is also possible for
the adversary to use the Brute Force attack, means
to try all the decryption keys which are less than

to obtain the intended message, it is less

efficient than factoring modulus N. Neural networks
are used to determine the Euler function

 from inputting 

where p and q are prime numbers and the neural

networks output will be .

Neural Network Techniques
The RBF Algorithm

The Radial Basis Function Networks are
similar to the biological networks behavior; primarily
the hidden layers contain almost sensing units and
the output layer contains linear units. Usually for a
common RBF network the transfer function in the
hidden layer is a Gaussian function that is
introduced in equation (1) as below:

ϕ (x) = exp ...(1)

where as, µi ∈ Rd is called the center vector, and
h ∈R is called the kernel width (or smoothing
parameter). The basic RBF network provides a
nonlinear transformation of a pattern 

according to equation (2):

 ...(2)

where m is the number of basis functions, wji is a
weight, bj is a bias12,15.

The Levenberg-Marquardt (LM)
Backpropagation Algorithm

A var iation of the standard
backpropagation algorithm is Levenberg-Marquardt
that is used for training the multilayer networks and
is preferably used over the standard
backpropagation; this algorithm is the fastest for
multilayer neural networks16,17. When the network
is a single layer one it is easy to find the optimum
solution in selecting the learning rate but it has
more than one hidden layer, it gets complex. This
needs for the learning rate being able of changed
between the steepest descent and the Newton
algorithm depending on weather the value of the
function is near the optimum solution or not; The
Levenberg-Marquardt algorithm has this property.
The disadvantage of the Levenberg-Marquardt
over the standard backpropagation is the storage
requirement for approximate Hessian matrix (rxr
matrix) where r is the number of parameters
(weights and biases) in the network. A Feedforward
Multilayer Neural Network Scheme is presented in
Fig. 2. Suppose that pattern inputs (pq) and
corresponding target outputs (tq) are given as
{p1,t1},{p2,t2},…,{pQ,tQ} the iteration of the
Levenberg-Marquardt algorithm will be as follows:

1. All inputs are given to the network and
the corresponding network outputs and error will
be computed:

a0=p1 (3)
am+1=fm+1(Wm+1am+bm+1); m=0,2,…,M-1 (4)
a=aM (5)

Where a0 is the output for input layer p1 ,
am+1 is the output for layer m+_1, fm+1 the transfer
function for layer m+1, Wm+1 is the weights matrix

Table 1: Results for networks trained with

RBF algorithm and data set 

Topology Epochs Correlation rate

1-5-1 5 0.928822
1-10-1 10 0.948572
1-20-1 20 0.986274
1-30-1 30 0.997146

Table 2: Results for networks trained with

RBF algorithm and data set  

Topology Epochs Correlation rate

1-50-1 50 0.92706
1-60-1 60 0.930847
1-100-1 100 0.943982
1-200-1 200 0.98831
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and bm+1 is the bias vector, aM is the last layer’s
output.

2. The squared errors over all inputs will be
computed from the following equation:

...(6)

3. Jacobean matrix (J(x)) and sensitivities
(S-M) with the recurrence relations will be computed
as follows:

...(7)

...(8)

...(9)

...(10)

...(11)

...(12)

where S-m is the Marquardt sensitivities matrix and
[J]h,l is the element of the Jacobean matrix that
corresponds to the hth row and lth column.

4. will be obtained from the below

equation:

...(13)

5. will be recalculated to obtain the

sum of squared errors, if it is smaller than the on
in step 2 then divide µ(i.e. 0.01) by ϑ (larger than

1, i.e. 10) then let  and start from

step 1; otherwise if the sum is not reduced then
multiply µ(i.e. 0.01) by ϑ (larger than 1, i.e. 10) and
start from step 4.

6. This process will be continued until the
difference between the network response and the
target reduced to the error goal that means the
algorithm has been converged.

EXPERIMENTAL RESULTS

The experimental results are made by
using Neural Networks in MATLAB interface in
Windows XP operating system SP2. The Neural
Networks used are:

• Radial Basis Function Neural Network
(RBF).18

• Levenberg- Marquardt Backpropagation
Neural Network.16

• Standard Backpropagation Neural
Network. 19

All the above methods were tested and
their correlation rates for their performance were
calculated wit ha large range of parameter. How
ever the results showed some significant
differences between the Neural Network models.
The standard Backpropagation has big difficulties
in the training stage most of the times; Levenberg-
Marquardt Backpropagation managed to be the
fastest RBF Neural Network is good in function
approximation but it has the limitations of a one-
hidden layer Neural Networks.

According to the network structure,
choosing optimal network architecture for the
related problem is very difficult and is a problem in
recent years.
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Table 3: Results for networks trained with
RBF algorithm and data set 

Topology Epochs Correlation rate

1-50-1 50 0.870128
1-60-1 60 0.887932
1-100-1 100 0.921691
1-200-1 200 0.955836

Table 5: Results for networks trained with
Levenberg-Marquardt Backpropagation

algorithm and data set  

Topology Epochs Correlation rate

1-10-1 1000 0.919369
1-10-10-1 1000 0.950031
1-20-20-1 1000 0.960536

Table 4: Results for networks trained with
Levenberg-Marquardt Backpropagation

algorithm and data set  

Topology Epochs Correlation rate

1-10-1 1000 0.972984
1-10-10-1 1000 0.999718
1-20-20-1 1000 0.999998

Table 6: Results for networks trained with
Levenberg-Marquardt Backpropagation

algorithm and data set  

Topology Epochs Correlation rate

1-10-1 1000 0.916092
1-10-10-1 1000 0.928758
1-20-20-1 1000 0.941809

Table 7: Results for networks trained with
Levenberg-Marquardt Backpropagation algorithm and

RBF algorithm and 66% of data set  

Algorithm Topology Epochs Correlation rate Type

RBF 1-200-1 200 1 Train set
RBF 1-200-1 200 0.032932 Test set
LM BP 1-20-20-1 1000 0.982042 Train set
LM BP 1-20-20-1 1000 0.546685 Test set

Table 8: Results for networks trained with
Levenberg-Marquardt Backpropagation algorithm and

RBF algorithm and 66% of data set 

Algorithm Topology Epochs Correlation rate Type

RBF 1-200-1 200 0.97881 Train set
RBF 1-200-1 200 -0.12899 Test set
LM BP 1-20-20-1 1000 0.961804 Train set
LM BP 1-20-20-1 1000 0.724941 Test set
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A large variety of network topologies were
used in t his approach. By using different network
topologies, the obtained results were considerable;
and after extensive testing, a conclusion can be
made that 2 hidden layers networks were much
easier in train and much accurate in performance.
Here the input patterns were  and the target outputs

were   in which the network

tries to learn the function that transfers N to

(i.e. → ) and predicts the

output  by taking the input N to overcome the

RSA problem.

To test the network performance here, the
correlation rate value is considered as where the
value is near the integer number 1 or -1 the there
is a good prediction of the output and where the
value is near zero there is not a good prediction in
that network. It is important that the good
correlation rate value plays an outstanding role as
the computation of the function can be solved by a

second degree polynomial equation since 

=N-p-q+1. In this test the limited number of data
set ( , , ) is
considered to find out the related neural networks’
performance.

In table 1 we can see the results of the
network trained by RBF algorithm with a data set

. In Table 2, 3 the larger prime

numbers are tried with a significant change in the
network topology. These test are also performed

for the Levenberg-Marquardt Backpropagation that
can be seen in Table 4,5,6 that can be seen that a
2 hidden layer performance in prediction is better
that the one hidden layer network. Finally, network
performance is done by the data set 33% for Test
set and 66% of the data set as Train set, gives us
the results exhibited in Table 7, 8. As it is clear the
Levenberg-Marquardt Backpropagation Network is
able not only to adapt to train data but to reach
good results to test sets in comparison with the
RBF Neural Network

CONCLUSION

In this paper, the approaches of one-
hidden layer (RBF) and 2-hidden layer (Levenberg-
Marquardt Backpropagation) Neural network
against the RSA cryptosystem were employed and
from the illustrated results it is clear that though
the RB neural network is very good at function
estimation, in the RSA problem its usage is not
reached in good results. Additionally the 2-hidden
layer neural network can be employed for this
purpose to reach better results according to the
network topology and the training of Levenberg-
Marquardt algorithm parameters. In general, the
RSA problem could be solved if the correlation rate
value reaches the number 1. There is still a long
way to employ the real power of the neural
networks.

In conclusion, the approaches of neural
networks in the RSA problem are promising though
many works is needed to be done.
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