
INTRODUCTION

Search Engines
A search engine is a program designed to

help one access files stored on a computer, for
example a public server on the World Wide Web².
Unlike an index document that organizes files in a
predetermined way, a search engine looks for files
only after the user has entered search criteria¹.

A search engine reference model
Most practical and commercially operated

Internet search engines are based on a centralized
architecture that relies on a set of key components,
namely Crawler, Indexer and Searcher. This

Oriental Journal of Computer Science & Technology Vol. 1(1), 49-54 (2008)

An algorithm for effective web crawling
mechanism of a search engine

B. VIJAYA BABU¹, M. SURENDRA PRASAD BABU² and CHETAN PRASAD Y.³

1-3Department of IST, K.L. College of Engineering, Vaddeswaram - 522 502 (India)
²Department of CS&SE, College of Engineering, Andhra University, Visakhapatnam (India).

(Received: February 12, 2008; Accepted: April 04, 2008)

ABSTRACT

Broad web search engines as well as many more specialized search tools rely on web crawlers to
acquire large collections of pages for indexing and analysis. Such a web crawler may interact with
millions of hosts over a period of weeks or months, and thus issues of robustness, flexibility, and
manageability are of major importance. In addition, I/O performance, network resources, and OS limits
must be taken into account in order to achieve high performance at a reasonable cost.

Current-day crawlers retrieve content only from the publicly indexable Web, i.e., the set of web
pages reachable purely by following hypertext links, ignoring search forms and pages that require
authorization or prior registration. In particular, they ignore the tremendous amount of high quality
content “hidden” behind search forms, in large searchable electronic databases. Also even if there is
good data collection that has been indexed we would be able to look at those sites having these info
only if we are connected to the internet and may be the days where hourly based nets used to be major
providers of internet are gone, these days the broadband facilities, high speed net connections are
available to the common man. But, the growth in the usage of laptops is even growing at same pace, in
that case one may not be able to access the net where ever he moves and if any important pages on
the net in a particular web site would be of no use even he has good configuration, as still it takes time
for the wi-fi networks to come in to full swing, until then saving every page of a particular website may
be a hectic task. In this paper, would provide a framework for addressing the problem of browsing the
web even when offline.

Key words: Web crawler, search engine, indexer, frontier, crawl manager.

architecture can be seen in systems including WWW
[McB94], Google, and our own FAST Search
Engine.

Crawler
A crawler is a module aggregating data

from the World Wide Web in order to make them
searchable. Several heuristics and algorithms exists
for crawling, most of them are based upon following
links.

Indexer
A module that takes a collection of

documents or data and builds a searchable index
from them. Common practices are inverted files,

vector spaces, suffix structures and hybrids of
these¹.

Searcher
The searcher is working on the output files

from the indexer. The searcher accepts user queries,
runs them over the index, and returns computed
search results to issuer.

Local store
A local store copy is a snapshot of the web

at the given crawling time for each document.

Systems usually run the crawler, indexer,
and searcher sequentially in cycles¹. First the
crawler retrieves the content, then the indexer
generates the searchable index, and finally, the
searcher provides functionality for searching the
indexed data. To refresh the search engine, this
indexing cycle is run again2,4.

Crawling the web
Introduction to web crawlers

Web crawlers are programs that exploit the
graph structure of the Web to move from page to
page. In their infancy such programs were also
called wanderers, robots, spiders, fish, and worms,
words that are quite evocative of web imagery. It
may be observed that the noun ‘crawler’ is not
indicative of the speed of these programs, as they
can be considerably fast².

Building a crawling infrastructure
The crawler maintains a list of unvisited

URLs called the frontier. The list is initialized with
seed URLs which may be provided by a user or

another program. Each crawling loop involves
picking the next URL to crawl from the frontier,
fetching the page corresponding to the URL through
HTTP, parsing the retrieved page to extract the
URLs and application specific information, and
finally adding the unvisited URLs to the frontier. The
crawling process may be terminated when a certain
number of pages have been crawled. Crawling can
be viewed as a graph search problem3,4. The Web
is seen as a large graph with pages at its nodes
and hyperlinks as its edges. A crawler starts at a
few of the nodes (seeds) and then follows the edges
to reach other nodes³.

Design of a web crawler
Requirements for a crawler

We now discuss the requirements for a
good crawler, and approaches for achieving them:[3]

Flexibility
Low Cost and High Performance

Robustness
Etiquette and Speed Control

Manageability and Re-configurability

System architecture
Two major components in the architecture

of a crawler are – crawling system and crawling
application4.

Crawling system
The crawling system itself consists of

several specialized components, in particular a crawl
manager, one or more downloaders, and one or
more DNS resolvers. All of these components, plus
the crawling application, can run on different
machines (and operating systems) and can be
replicated to increase the system performance4,5.
The crawl manager is responsible for receiving the
URL input stream from the applications and
forwarding it to the available downloaders and DNS
resolvers while enforcing rules about robot exclusion
and crawl speed. A downloader is a high
performance asynchronous HTTP client capable of
downloading hundreds of web pages in parallel,
while a DNS resolver is an optimized stub DNS
resolver that forwards queries to local DNS
servers5,6.

50 Babu et al., Orient. J. Comp. Sci. & Technol., Vol. 1(1), 49-54 (2008)

Fig. 1: A search engine model

Crawl manager
The crawl manager is the central

component of the system, and the first component
that is started up. Afterwards, other components
are started and register with the manager to offer
or request services. The manager is the only
component visible to the other components, with
the exception of the case of a parallelized
application, described further below, where the
different parts of the application have to interact4.
The manager receives requests for URLs from the
application, where each request has a pointer to a
file containing several hundred or thousand URLs
and located on some disk accessible via internet.

The manager will enqueue the request, and will
eventually load the corresponding file in order to
prepare for the download. In general, the goal of
the manager is to download pages in approximately
the order specified by the application, while
reordering requests as needed to maintain high
performance without putting too much load on any
particular web server. After parsing the robots files
and removing excluded URLs, the requested URLs
are sent in batches to the downloaders, making sure
that a certain interval between requests to the same
server is observed. The manager later notifies the
application of the pages that have been downloaded
and are available for processing6,7,8.

Design/Prototype
In addition to this, we would have to write

a small code segment which does the following [10]:
´ Take in a URL
´ Open a connection
´ Read in a page
´ Parse the page

Step 1. Build gethttp
gethttp http://www.cs.purdue.edu
The gethttp program gets the document from the
URL passed as parameter and prints it on the
screen. You may try using other URLs. This program
uses a function that receives a URL as a parameter
and returns a FILE * handle. You may use this handle
in calls to fgets(), fgetc(), fscanf, and other stream
procedures

Removing tags from a document
Add the argument -t to gethttp that gets a

document and removes the HTML tags from the
document. The tags are strings of the form “<...>”.
If the document is not “text/html” print “Error:
document is not text/html” and exit. Also skip
everything between an ampersand (“&”) and a semi-
colon (“;”). This will eliminate escape characters such
as . Additionally, eliminate the new lines and
allow only one space between words. Also ignore
any text between <script ...> ... </script> tags.

For example:
gethttp -t http://www.cs.purdue.edu
will print the document without any of the tags or
escape characters.

Babu et al., Orient. J. Comp. Sci. & Technol., Vol. 1(1), 49-54 (2008) 51

Fig. 2: Flow chart representing a web crawler

Initialize frontier with seed URLs

Check for termination

Pick URL from frontier

Fetch page

Parse page

Add URLs to frontier

end

Start

Not done

No URL

done

Fig. 3: Web crawler architecture

Finding hyperlinks
Add the argument -a that prints the

hyperlinks (URLs) in a document. The hyperlinks in
a document are found in tags of the form . If the document is not “text/html” print
“Error: document is not text/html”and exit.
For example:
gethttp -t http://www.cs.purdue.edu
will print the hypelinks found in the document.

Building a web crawler program
The webcrawler program will have the

syntax:
webcrawl [-u <maxurls>] url-list
Where maxurls is the maximum number of URLs
that will be traversed. By default it is 1000. url-list is
the list of starting URL’s that will be traversed.

Web crawling procedure
You will visit the URLs in a breadth first

search manner, that is, we will visit the URLs in the
order they were inserted in the URL array. To do this
you will keep a current index in the URL Array that
you will increment by one until we have reached nURL.

During the web-crawiling we follow these steps
1. First insert the initial URLs from the URL list

in the URL Array.
2. For currentURL = 0 to urlArray.nURL (For all

the URLs in the URL array)
a) Get the document that corresponds to the

URL.
b) If the type of the document is not text/html

then go to the next URL
c) Get the first 200 characters of the document

without tags. Add this description to the
URLRecord for this URL.

d) Find all the hyperlinks of this document and
add them to the URLArray and
URLDictionary if they are not already in the
URLDictionary. Only insert up to maxURL
entries.

e) For each word in the document without tags,
add this URLRecord to the word in the
WordDictionary.

Web becomes offline…!!!
Our Idea

Given any web site address or URL, by a
user, to this algorithm, it can present the user with

the web graph or the site map of that particular
web site. The algorithm now waits for the user to
select the pages he want to save on to his hard
disk, at the same time it preserves the links of the
pages stored, i.e., the pages are stored in such a
way that the links when clicked are accessible, only
if the page pointed by that link is also stored by the
user.

The algorithm also creates a new HTML
file showing the web graph of the web site and also
highlighting the links of all the pages that have been
stored from that particular site, so that if any stored
page has not been directly linked to any of the web
pages it also can be viewed with out actually having
to open the folder in which the files have been
stored.

The procedure
First take the input from the user and

convert it into the standard form i.e., in to all lower
case letters and its domain form. Now apply time
stamp before actually entering in to the process,
so as to reduce huge time loss. Now parse the page
for the hypertext links and then check if the links
are in the same domain and if present, then we
parse them by adding them in to the queue and
adding the link to the queue which stores the already
parsed links. Now display the web graph or the site
map of the web site and then store the pages
selected by the user to the hard disk and also
change the links so that the saved pages links
remain active if their corresponding page is also
stored¹¹.

Algorithm
1. Take the input as IURL from the user
2. Process(URL)
{
Get the main URL in lower case
(ex: DSENGG.COM/NCACT08 should be
processed as dsengg.com/ncact08)
if the web page exists
apply timestamp
else display error message and
exit
}
3. Initialize the queues ‘todo’=URL and done’
4. initialize n=1
5. Extract links(todo[k])

Babu et al., Orient. J. Comp. Sci. & Technol., Vol. 1(1), 49-54 (2008)52

{
While(todo ! empty) do
If the page has frames then
{
For(i=1 to no.of frames) do
Extract links(URLi)
}
If the page has forms then
Omit them
Else
{
While(!EOF URL) do
{
Parse the document for anchor tags <a> Get the
child URL – CURL
If the domains of the URL and CURL are equal
then
Enter CURL in to ‘todo’
queue
Else
Extract links(todo[++k])
}
} Enter the url in to ‘done’ queue and increment n
}
5. Initialize the array select[n]
6. Display the web graph
7. selection()
{
For (all web graph nodes) do
{
If (web graph node is selected)
Select[i]=1
Else
Select[i]=0
}
}
8. download(select[n])
{
For(i=1 to n)
If select[i]=1 then
Save done[i] in temp folder
}
9. Update (URLs)
{

Let the user choose the destination path on his disk.
Create a folder from the title of the URL.
Update the anchor tags such way that the files
Having links to each other are linked properly.
Move files from the temp folder to the destination

Folder.
Create a new HTML document which displays the
web Graph of the web site and also highlighting the
Saved pages.
}
10. Exit

Resources needed
Variables used
URL – To store the initial URL
todo – A queue to store the URLs to be parsed
done – A queue to store the URLs that have been
parsed
n – Counter to store the no.of URLS parsed
select(n) – An array which specifies the pages to
be stored
CURL – To store the child URL
i, k – General variables.

Functions used
Process(URL) – To standardize the input URL,
and check for the availability of the web site.
Extract links(todo[k]) – To parse a web page, by
dividing frames and checking for form
links and checking for domain equality.
Selection() – To recognize the pages selected by
the user and to store the numbers of the
pages to be stored in the array select[n].
Download(select[n]) – To save the selected files,
by using the select[n] array and saving the
corresponding pages from done queue in temp
folder
Update(URL) – To update the links in the saved
pages and to create a new HTML document which
shows the web site graph and highlights the web
pages that have been stored by linking them.

CONCLUSION

We have described the architecture and
implementation details of our crawling system, and
presented some preliminary experiments. There are
obviously many improvements to the system that
can be made.

Our main interest is in using the crawler in
our research group to look at other challenges in
web search technology. A very good tool can be
produced using open source software with minimal
expense and time. A good tool should be developed

Babu et al., Orient. J. Comp. Sci. & Technol., Vol. 1(1), 49-54 (2008) 53

and updated using a short development cycle.
Modular design can enable flexibility and speed for
updates to evolving web standards.

A number of topical crawling algorithms
have been proposed in the literature. Often the
evaluation of these crawlers is done by comparing
a few crawlers on a limited number of queries/tasks

without considerations of statistical significance. As
the web crawling field matures, the disparate
crawling strategies will have to be evaluated and
compared on common tasks through well-defined
performance measures. In the future, we see more
sophisticated usage of hypertext structure and link
analysis by the crawlers.

REFERENCES

1. Sergey Brin and Larry Page. Google search
engine.http://google.stanford.edu

2. Lawrence Page and Sergey Brin. The
anatomy of a largescale hypertextual web
search engine. In To Appear: Proceedings
of the Seventh International Web Conference
(WWW 98), (1998)

3. On Search, the Series (http://www.tbray.org/
o n g o i n g / W h e n / 2 0 0 x / 2 0 0 3 / 0 7 / 3 0 /
OnSearchTOC); Tim Bray; A series of essays
on search engine techniques (2003).

4. A. Arasu, J. Cho, H. Garcia-Molina, and S.
Raghavan. Searching the web. ACM
Transactions on Internet Technologies, 1(1):
(2001).

5. J. Hirai, S. Raghavan, H. Garcia-Molina, and
A. Paepcke. WebBase : A repository of web
pages. In Proc. of the 9th Int. World Wide
Web Conference, May (2000).

6. M. Najork and J.Wiener. Breadth-first search
crawling yields high-quality pages. In 10th Int.
World Wide Web Conference, 2001. The
Deep Web: Surfacing Hidden Value. http://
www.comple tep lanet .com/Tutor ia ls /
DeepWeb/.

7. Soumen Chakrabarti, Martin van den Berg,
and Byron Dom. Focused crawling: A new
approach to topicspecific web resource
discovery. In Proceedings of the Eighth
International World-Wide Web Conference,
(1999).

8. Junghoo Cho and Hector Garcia-Molina. The

evolution of the web and implications for an
incremental crawler. In Proceedings of the
Twenty-sixth International Conference on
Very Large Databases, Available at http://
wwwdiglib. stanford.edu/cgi-bin/get/SIDL-
WP-1999-0129 (2000).

9. Junghoo Cho and Hector Garcia-Molina.
Synchronizing a database to improve
freshness. In Proceedings of the International
Conference on Management of Data,
Available at http://www-diglib.stanford.edu/
cgi-bin/get/SIDLWP- 1999-0116 (2000).

10. Junghoo Cho, Hector Garcia-Molina, and
Lawrence Page. Efficient crawling through url
ordering. In Proceedings of the Seventh
International World-Wide Web Conference,
Available at http://www-diglib.stanford.
edu/cgibin/ WP/get/SIDL-WP-1999-0103
(1998).

11. Chetan Prasad Y, Web Crawler.In
Proceedings of International Conferrence on
Systemics, Cybernetics and Informatics,
ICSCI-2007, Jan 03-07, Hyderabad, India
(2007).

12. B.Vijaya Babu, Prof Surendra Prasad
Babu.M,A.Siddhartha and T.Viswanath An
algorithm for effective web crawling
mechanism of a search engine. In the
Proceedings of international Conference on
Advanced Computing Technologies,
NCACT08, March 20, Perambalur,
Tamilnadu, India (2008).

Babu et al., Orient. J. Comp. Sci. & Technol., Vol. 1(1), 49-54 (2008)54

